
1w h i t e pa p e r   V.1 .1     L a s t  u p dat e d  1 8  M aY  2 0 1 8   SU    B J EC T  TO  F URTHER       RE  V IEW    &  UPDATE  

Hedera: A Governing Council &
Public Hashgraph Network
The Trust Layer of the Internet

Leemon Baird, Mance Harmon, and Paul Madsen



2whitepaper

Vision

The Hedera Hashgraph Council will provide governance for an  
open, fast and fair decentralized public ledger built on the  
hashgraph consensus algorithm. Governance will be maintained 
by a council of up to 39 known and reputable global organizations, 
committed to the support and evolution of a stable, predictable  
public ledger infrastructure.



3executive summary

Executive Summary

Distributed ledger technologies (DLT) are disrupting and transforming existing markets in multiple 
industries. However, in our opinion there are five fundamental obstacles to overcome before distributed 
ledgers can be widely accepted and adopted across every industry and geography. In this paper we will 
examine these obstacles, and discuss why Hedera hashgraph is ideally suited to be the world’s first mass-
adopted public distributed ledger, supporting a vast array of applications.

1	 PERFORMANCE  - The most compelling use cases require hundreds of thousands of 
transactions per second in a single shard (perhaps millions of transactions per second 
(tps) in a fully-sharded solution), and many require consensus latency measured in seconds. 
These performance metrics are orders of magnitude beyond what current public DLT 
platforms can achieve.

2	 SECURITY  - If public platforms are to facilitate the transfer of trillions of dollars of value, 
we have to expect them to be targeted, and we have to prepare for this. To do so requires 
a consensus algorithm that provides the best security one can achieve, with the security 
properties of the algorithm formally proven. Vectors of security vulnerabilities shouldn’t be 
mitigated; they should be eliminated entirely. Other public DLT platforms are trading off 
decentralization (and so potentially compromising security) for performance gains. 

3	 GOVERNANCE  - A general-purpose public ledger should be governed by representatives 
from a broad range of market sectors, each with world-class expertise in their respective 
industries, and also selected to provide global geographic representation for all markets. 
Those that are governing need technical expertise so they can competently manage  
the technical roadmap. They need business expertise so they can manage business 
operations of the organization. They need expertise in economics and currency markets 
so they can manage the cryptocurrency. They need legal expertise to help navigate the 
evolving regulatory environment. In other words, governance should be by those globally 
recognized as world leaders in their respective industries, and representative of every 
market in the world. 

 
4	 STABILITY  - Without technical and legal mechanisms to enforce the decisions of the 

governing body, public platforms are at risk of devolving into chaos. Strong security and 
mature governance will enable a stable platform - one that engenders the necessary trust 
and confidence among those that would build commercial or sensitive applications on it.

5	 REGULATORY COMPLIANCE  - We expect that governments will continue to increase 
oversight of public ledgers and associated cryptocurrencies and tokens. We consider that 
a distributed public ledger must be capable of enabling appropriate Know Your Customer 
(KYC) and Anti Money Laundering (AML) checks. 



4executive summary

What is required to move our industry forward and enable it to 
realize its full potential? 

A platform that provides a combination of high performance, 
strong security, industry-leading governance, and both technical 
and legal controls to ensure the stability of the platform. Only 
then do we think mainstream markets will trust the platform 
enough to adopt public DLT en masse.

STABILITY

REGULATORY

COMPLIANCE
PERFORMANCE

GOVERNANCE SECURITY



5hedera hashgraph council

Introducing Hedera – a governing body and public 
hashgraph network designed to address the needs 
of mainstream markets.

Hedera will be governed by a council of renowned enterprises and organizations, across multiple 
industries and geographies. Its vision is a cyberspace that is trusted, secure, and without the need for 
central servers. Its licensing and governance model protects the community by eliminating the risk of 
splitting, guaranteeing the integrity of the codebase, and providing open access to the protected core. 
All Governing Members will have equal governing rights and each Governing Member (with the exception 
of Swirlds, Inc.) is expected to serve a limited term, ensuring that governance is decentralized.2 

Hedera is both an organization and distributed ledger platform that resolves the factors that constrain 
adoption of public DLT by the mainstream. 

1.	 PERFORMANCE  - The platform is built on the hashgraph distributed consensus 
algorithm, invented by Dr. Leemon Baird. Hashgraph provides near-perfect efficiency in 
bandwidth usage and consequently can process hundreds of thousands of transactions 
per second in a single shard (a fully-connected, peer-to-peer mesh of nodes in a network). 
Consensus latency is measured in seconds, not minutes, hours, or days.

2.	 SECURITY  - Hashgraph achieves the gold standard for security in the field of 
distributed consensus: asynchronous Byzantine Fault Tolerance (aBFT). Other platforms 
that use coordinators, leaders, or communication timeouts tend to be vulnerable to 
Distributed Denial of Service (DDoS) attacks against those vulnerable areas. Hashgraph 
is resilient to these types of attacks against the consensus algorithm, and achieves the 
theoretical limits of security defined by aBFT. Achieving this level of security at scale is 
a fundamental advance in the field of distributed systems as it is the gold standard for 
security in this category.

	 Many applications require that the consensus order of transactions match the actual 
order in which the transactions are received by the network. It should not be possible 
for a single party to prevent the flow of transactions into the network, nor influence 
the order of transactions in the eventual community consensus. A fair consensus 
algorithm ensures that if a user can submit a transaction to the network at all, then 
the transaction will be received by the network and the order in which it was received 
will be a fair ordering. Hashgraph uniquely ensures that the actual order transactions 
are received by the community will be reflected in the consensus order. In other words, 
hashgraph ensures both Fair Access and Fair Ordering.

	 Formal proofs of the aBFT and fairness properties for the hashgraph algorithm exist, 
and have been available for public review since June, 2016.3



6hedera hashgraph council

3.	 GOVERNANCE  - Hedera governance is comprised of two parts: Council Governance,  
used for the management of the business of the council, and Consensus used in the Hedera 
platform for determining the consensus order of the transactions. The Council Governance 
Model concerns the election of the Board of Managers of Hedera (Governing Board).  
The Governing Board will establish policy for council membership, regulate the network 
tokens, and approve changes to the platform codebase. The Consensus Model concerns  
the process by which the nodes reach a consensus on the order of transactions in 
the platform. Our proposed model is designed to prevent consolidation of power over 
consensus. It will prevent collusion by a few to attack the system (such as efforts to 
counterfeit the cryptocurrency, modify the ledger inappropriately, or influence the 
consensus order of transactions). 

	
a.	 Council Governance Model: Hedera will be governed by up to 39 leading 

organizations in their respective fields, bringing needed experience in 
process and business expertise that has been absent in previous public 
ledger platforms. Membership criteria are designed (i) to reflect a range of 
industries and geographies, (ii) to have highly respected brands and trusted 
market positions, and (iii) to encompass competing perspectives. The 
Governing Members will elect the Board of Managers and also contribute 
expertise through subcommittee membership. The terms of governance 
ensure that no single member will have control, and no small group of 
members will have undue influence over the body as a whole.

	
b.	 Consensus Model: Loosely stated, each node casts one vote for each coin 

of the hashcap cryptocurrency they own. New nodes will join the network, 
and be compensated for their services in maintaining the hashgraph. The 
number of nodes is expected to grow rapidly, ensuring consensus voting 
privileges are distributed to many thousands of nodes. 

4.	 STABILITY  - Hedera relies on both technical and legal controls to ensure the stability of 
the platform. 

	 Hedera technical controls enable two capabilities.

i)	 First, the Swirlds technology ensures that software clients validate the 
pedigree of the Hedera hashgraph prior to use through a shared state 
mechanism. It isn’t possible for a network node to fork the official version 
of the Hedera hashgraph platform, make changes, and then have those 
changes accepted as valid. If the original hashgraph and the copy are 
changed independently, software clients will know which is the valid version 
and which is not.



7hedera hashgraph council

ii)	 Second, Swirlds makes it possible for the Hedera governing body not only 
to specify the software changes to be made to network nodes, but also to 
ensure precisely when those changes are adopted, and to guarantee that 
they are. When the Hedera governing body releases a software update, all 
honest network providers will have their software automatically update, 
and all will do so at exactly the same moment in history. Anyone with invalid 
software will no longer be able to modify the hashgraph and have the world 
accept their version of the hashgraph as legitimate.

	 Hedera legal controls ensure the platform will not fork into a competing platform and 
cryptocurrency. 

iii)	 The Hedera codebase will be governed by the council, and will be released 
for public review with Version 1.0. It will not be open source, but anyone will 
be able to read the source code, recompile it, and verify that it is correct. 
No license will be required to use the Hedera platform. No license will be 
required to write software that uses the services of the Hedera platform. 
No license will be required to build smart contracts on top of the Hedera 
platform. Applications built upon the Hedera platform can be open source 
or proprietary. They do not require any license or any approval from Hedera. 
Swirlds and Hedera will simultaneously embrace open review, while bringing 
stability by using the patents defensively. In this way, Hedera will provide a 
transparent codebase that will provide the stability that markets demand 
for mainstream adoption of a public ledger.

	 The combination of technical and legal controls provide the governing body with the 
mechanisms needed to enable meaningful governance, and to bring the stability that we 
think is required for broad-based adoption.

5.	 REGULATORY COMPLIANCE  - The Hedera technical framework includes an Opt-In 
Escrow Identity mechanism that gives users a choice to bind verified identities to otherwise 
anonymous cryptocurrency accounts, which will in our opinion provide governments with 
the oversight necessary to ensure regulatory compliance. This is completely optional, and 
each user can decide what kinds of credentials, if any, to reveal. We intend to work with 
governments to provide the same level of protection to distributed public ledgers as is 
currently present in the financial system.

2 Swirlds, Inc. (Swirlds) is a Delaware corporation that is the owner and licensor of the hashgraph consensus algorithm. Swirlds is currently 
the sole member of Hashgraph Consortium, LLC, the expected legal entity for the Hedera Hashgraph Council. Prior to launch of the Hedera 
Hashgraph public ledger and the establishment of the Hedera Hashgraph Council, Swirlds will retain control of governance and network 
development, and Swirlds will be a permanent member of the Hedera Hashgraph Council. 

3 See Appendix 3 for a full definition of the hashgraph algorithm, including proofs of aBFT.



8i n t r o d u c t i o n

Part 1
An introduction to 
Hedera Hashgraph



9introduction

The hashgraph data structure and consensus algorithm provides a 
new platform for distributed consensus. This introduction gives an 
overview how hashgraph works, and of some of its properties. 

The goal of a distributed consensus algorithm is to allow a community 
of users to come to an agreement on the order in which some of 
them generated transactions, when no single member is trusted 
by everyone. In this way, it is a system for generating trust, when 
individuals do not already trust each other. Hashgraph achieves this in 
a fundamentally new way.

A blockchain is like a tree that is continuously pruned as it grows - 
this pruning is necessary to keep the branches from growing out of 
control. In hashgraph, rather than pruning new growth, it is woven 
back into the body.

BLOCKCHAIN HASHGRAPH



10introduction

In both blockchain and hashgraph, any member can create a 
transaction, which will eventually be put into a container (the “block”), 
and will then spread throughout the community. In blockchain, those 
containers are intended to form a single, long chain. If two miners 
create two blocks at the same time, the community will eventually 
choose one to continue, and discard the other one. It’s like a growing 
tree that is constantly having all but one of its branches chopped off. 

In hashgraph, every container is used, and none are discarded. All the 
branches continue to exist forever, and eventually grow back together 
into a single whole. This is more efficient.

Furthermore, blockchain fails if the new containers arrive too quickly, 
because new branches sprout faster than they can be pruned. That 
is why blockchain needs proof-of-work or some other mechanism to 
artificially slow down the growth. In hashgraph, nothing is thrown 
away. There is no harm in the structure growing quickly. Every member 
can create transactions and containers whenever they want. So it is 
very simple, and tends to be very fast. 

Finally, because the hashgraph doesn’t require pruning and therefore 
is simpler, it allows more powerful mathematical guarantees, such 
as Byzantine agreement and fairness. Distributed databases such as 
Paxos are Byzantine, but not fair. Blockchain is neither Byzantine nor 
fair. Hashgraph is both Byzantine and fair.

The hashgraph algorithm accomplishes being fair, fast, Byzantine, 
ACID compliant, efficient, inexpensive, timestamped, and DoS 
resistant.



11 performance

Performance

COST

The hashgraph is inexpensive, in the sense of avoiding proof-of-work. Individuals and organizations 
running hashgraph nodes do not need to purchase expensive custom mining rigs. Instead, they can run 
readily available, cost-effective hardware. The hashgraph is 100% efficient, wasting no resources on 
computations that slow it down.

EFFICIENCY

The hashgraph is 100% efficient, as that term is used in the blockchain community. In blockchain, work 
is sometimes wasted mining a block that later is considered stale and is discarded by the community. 
In hashgraph, the equivalent of a “block” never becomes stale. Hashgraph is also efficient in its use of 
bandwidth. Whatever is the amount of bandwidth required merely to inform all the nodes of a given 
transaction (even without achieving consensus on a timestamp for that transaction), hashgraph adds only 
a very small overhead beyond that absolute minimum. Additionally, hashgraph’s voting algorithm does not 
require any additional messages be sent in order for nodes to vote (or those votes to be counted) beyond 
those messages by which the community learned of the transaction itself.

THROUGHPUT

The hashgraph is fast. It is limited only by the bandwidth. If each member has enough bandwidth to 
download and upload a given number of transactions per second, the system as a whole can handle close 
to that many. Even a fast home internet connection could be fast enough to handle all of the transactions 
of the entire VISA card network, worldwide. 

THE FOLLOWING CHARTS GIVE REPRESENTATIVE PERFORMANCE RESULTS FOR THE HASHGRAPH.



12 performance

100

10

1

0.1

0.01

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

128

64

32

16

8

4

2 computers

La
te

nc
y 

(s
ec

on
ds

)

Throughput (100-byte transactions per second)

Hashgraph Latency vs Throughput
1 region, m4.4xlarge



13 performance

100

10

1

0.1

0.01

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

128

La
te

nc
y 

(s
ec

on
ds

)

Throughput (100-byte transactions per second)

64

32

16

8

4

Hashgraph Latency vs Throughput
2 regions, m4.4xlarge



14 performance

100

10

1

0.1

0.01

0 100,000 200,000 300,000 400,000 500,000

64

32

16
8

La
te

nc
y 

(s
ec

on
ds

)

Throughput (100-byte transactions per second)

Hashgraph Latency vs Throughput
8 regions, m4.4xlarge



15 performance

These tests were performed using Amazon AWS m4.4xlarge instances. The top-most figure was for 
a single region: Virginia. The middle was for two regions: Virginia and Oregon, on opposite sides of the 
continental United States, over 2,000 miles apart. The bottom-most figure was for 8 regions: Virginia, 
Oregon, Canada, Sao Paulo, Australia, Seoul, Tokyo, and Frankfurt.
 
Each curve is for a different number of instances (computers) - this shown to the right of the curve. In 
every case, the instances were distributed evenly across the number of regions being used.
 
The horizontal axis is the number of 100-byte transactions per second for which the ledger achieved 
consensus. In these experiments, this throughput ranges from less than 50,000 tps up to almost 500,000 
tps. On most of the lines, the second dot from the left is 10,000 tps. 

The vertical axis is the average number of seconds from when a node first creates a transaction until 
it knows the exact consensus order and consensus timestamp for it. This isn’t just a time to a first 
confirmation. It is the time until a 100% certain finality is reached. 

In all of the experiments, this latency was under 11 seconds. And various experiments had latencies down 
to less than 0.04 seconds.

In the graphs, there are clear tradeoffs between throughput, latency, number of computers, and 
geographic distribution. For 32 computers running at 50,000 transactions per second, consensus finality 
is reached in 3 seconds when the network is spread across 8 regions spanning the globe. When the 
network stretches only 2,000 miles across the US, this drops to 1.5 seconds. In a single region, it drops to 
0.75 seconds.
 
If it is desired to keep the latency under the 7 seconds required by credit cards, while still achieving 
200,000 transactions per second, it is possible to use 32 computers in eight regions, or use 64 computers 
in two regions, or use 128 computers in one region. 
 
It is important to note that these tests are purely for achieving consensus on transaction order and 
timestamps. They do not include the time to process transactions. For example, if every transaction is 
digitally signed, then these results suggest that a great deal of processing power might be needed to 
verify hundreds of thousands of digital signatures per second. It is possible that GPU implementations 
could be helpful. 
 
In addition, if a transaction is of the form “store this gigabyte file”, then bandwidth limitations would 
greatly slow down the system.

STATE EFFICIENCY

Once an event occurs, within seconds everyone in the community will know where it should be placed in 
history with 100% certainty. More importantly, everyone will know that everyone else knows this. At that 
point, they can just incorporate the effects of the transaction and, unless needed for future audit or 
compliance, then discard it. So in a minimal cryptocurrency system, each member would only need to store 
the current balance of each account that isn’t empty. They wouldn’t need to remember the full history of 
the transactions that resulted in those balances all the way back to ‘genesis’.



16 security

Security

CRYPTOGRAPHY

All communications are encrypted with TLS 1.2, all events are digitally signed, and the hashgraph is 
constructed using cryptographic hashes. All the algorithms and key sizes were chosen to be compliant 
with the CNSA Suite security standard. This is the standard required for protecting US government Top 
Secret information. It specifies using AES-256, RSA 3072, SHA-384, and ECDSA and ECDH with p-384 
and using ephemeral keys for perfect forward secrecy.

ASYNCHRONOUS BYZANTINE FAULT TOLERANCE

The hashgraph is asynchronous Byzantine Fault Tolerant. This is a technical term meaning that no single 
member (or small group of members) can prevent the community from reaching a consensus. Nor can 
they change the consensus once it has been reached. Each member will eventually reach a point where 
they know for sure that they have reached consensus. Blockchain does not have a guarantee of Byzantine 
agreement, because a member never reaches certainty that agreement has been achieved (there’s just 
a probability that rises over time). Blockchain is also non-Byzantine because it doesn’t automatically 
deal with network partitions. If a group of miners is isolated from the rest of the internet, that can allow 
multiple chains to grow, which conflict with each other on the order of transactions. 

It is worth noting that the term “Byzantine Fault Tolerant” (BFT) is sometimes used in a weaker sense 
by other consensus algorithms. But here, it is used in its original, stronger sense that (1) every member 
eventually knows consensus has been reached, (2) attackers may collude, and (3) attackers even control 
the internet itself (with some limits). Hashgraph is Byzantine, even by this stronger definition.

There are different degrees of BFT, depending on the assumptions made about the network and 
transmission of messages. 

The strongest form of BFT is asynchronous BFT- meaning that it can achieve consensus even if malicious 
actors are able to control the network and delete or slow down messages of their choosing. The only 
assumptions made are that more than ⅔ are following the protocol correctly, and that if messages are 
repeatedly sent from one node to another over the internet, eventually one will get through, and then 
eventually another will, and so on. Some systems are partially asynchronous, which are secure only if 
the attackers do not have too much power and do not manipulate the timing of messages too much. For 
instance, a partially asynchronous system could prove Byzantine under the assumption that messages get 
passed over the internet in ten seconds. This assumption ignores the reality of botnets, Distributed Denial 
of Service attacks, and malicious firewalls.

A full technical report describing the hashgraph data structure and algorithm, including mathematical 
proofs that Hashgraph is asynchronous BFT, is included in the Appendix.



17 security

ACID COMPLIANCE

The hashgraph is ACID compliant. ACID (Atomicity, Consistency, Isolation, Durability) is a database term, 
and applies to the hashgraph when it is used as a distributed database. A community of nodes uses it 
to reach a consensus on the order in which transactions occurred. After reaching consensus, each node 
feeds those transactions to that node’s local copy of the database, sending in each one in the consensus 
order. If the local database has all the standard properties of a database (ACID), then the community as a 
whole can be said to have a single, distributed database with those same properties. In blockchain, there is 
never a moment when you know that consensus has been reached, so it would not be ACID compliant.

DISTRIBUTED DENIAL OF SERVICE ATTACK RESILIENCE

One form of Denial of Service (DoS) attack occurs when an attacker is able to flood an honest node on a 
network with meaningless messages, preventing that node from performing other (valid) duties and roles. 
A Distributed Denial of Service (DDoS) uses public services or devices to unwittingly amplify that DoS 
attack - making them an even greater threat. 

In a DLT, a DDoS attack could target the nodes that contribute to the definition of consensus and, 
potentially, prevent that consensus from being established.

The hashgraph is DDoS resilient as it empowers no single node or small number of nodes with special 
rights or responsibilities in establishing consensus. Both Bitcoin and hashgraph are distributed in a way 
that resists DDoS attacks. An attacker might flood one member or miner with packets, to temporarily 
disconnect them from the internet. But the community as a whole will continue to operate normally. An 
attack on the system as a whole would require flooding a large fraction of the members with packets, 
which is more difficult. There have been a number of proposed alternatives to blockchain based on  
leaders or round robin. These have been proposed to avoid the proof-of-work costs of Bitcoin. But they 
have the drawback of being sensitive to DDoS attacks. If the attacker attacks the current leader, and 
switches to attacking the new leader as soon as one is chosen, then the attacker can freeze the entire 
system while still attacking only one computer at a time. Hashgraph avoids this problem, while still not 
needing proof-of-work.



18fairness

Fairness

Hashgraph is fair because there is no leader or miner given special permissions for determining the 
consensus timestamp assigned to a transaction. Instead, the consensus timestamp for transactions are 
calculated via a voting process in which the nodes collectively and democratically establish the consensus. 
We can distinguish between three aspects of fairness.

FAIR ACCESS

Hashgraph is fundamentally fair because no individual can stop a transaction from entering the system, 
or even delay it very much. If one (or few) malicious node attempts to prevent a given transaction from 
being delivered to the rest of the community and so be added into consensus, then the random nature of 
the gossip protocol will ensure that the transaction flows around that blockage.

FAIR TIMESTAMPS

Hashgraph gives each transaction a consensus timestamp that reflects when the majority of the network 
members received that transaction. This consensus timestamp is “fair”, because it is not possible for a 
malicious node to corrupt it and make it differ by very much from that time.
Every transaction is assigned a consensus time, which is the median of the times at which each 
member says it first received it. Received here refers to the time that a given node was first passed 
the transaction from another node through gossip. This is part of the consensus, and so has all the 
guarantees of being Byzantine. If more than ⅔ of participating members are honest and have reliable 
clocks on their computer, then the timestamp itself will be honest and reliable, because it is generated 
by an honest and reliable member or falls between two times that were generated by honest and reliable 
members. Because hashgraph takes the median of all these times, the consensus timestamp is robust. 
Even if a few of the clocks are a bit off, or even if a few of the nodes maliciously give times that are far off, 
the consensus timestamp is not significantly impacted.
This consensus timestamping is useful for things such as a legal obligation to perform some action 
by a particular time. There will be a consensus on whether an event happened by a deadline, and the 
timestamp is resistant to manipulation by an attacker. In blockchain, each block contains a timestamp, but 
it reflects only a single clock: the one on the computer of the miner who mined that block.

FAIR TRANSACTION ORDER

Transactions are put into order according to their timestamps. Because the timestamps assigned to 
individual transactions are fair, so is the resulting order. This is critically important for some use cases. 
For example, imagine a stock market, where Alice and Bob both try to buy the last available share of  
a stock at the same moment for the same price. In blockchain, a miner might put both of those 
transactions in a single block, and have complete freedom to choose what order they occur. Or the miner 
might choose to only include Alice’s transaction, and delay Bob’s to a future block. In hashgraph, there is 
no way for an individual to unduly affect the consensus order of those transactions. The best Alice can do 
is to invest in a better internet connection so that her transaction reaches everyone before Bob’s. That’s 
the fair way to compete. 



19governance

Governance

A governance model for a public ledger will define the rules and policies that control the evolution of the node 
software, issuance of coins, and the reward model by which participants are incentivized. The stakeholders 
whose interests and motivations must be balanced are those running the consensus nodes, those building 
applications on the platform, those businesses relying on those applications, the end-users of those 
applications, and relevant regulatory bodies. 

Hedera Hashgraph Council is a for-profit LLC that will be governed by up to 39 renowned enterprises and 
organizations, across multiple industries and geographies. Its vision is a cyberspace that is trusted, secure, 
and without the need for central servers. Its licensing and governance model protects the community by 
eliminating the risk of splitting, guaranteeing the integrity of the codebase, and providing open access to the 
protected core. Under the governance model, all Governing Members will have equal governing rights and 
each Governing Member (with the exception of Swirlds) is expected to serve a limited term, ensuring that no 
single Governing Member or group of Governing Members has centralized control. The Hedera Hashgraph 
Council guarantees the wide, equitable distribution of the hash cryptocurrency, and that nodes in the 
network are being fully utilized.

Hedera has a Permissioned Governance Model with Permissionless or Open Consensus.  

The Governance Model concerns the election of the Governing Board and placement of representatives on 
subcommittees. The Governing Members are responsible for electing the Board of Managers of Hedera. 
The board establishes policy for council membership, regulates the network rules and tokens, and approves 
changes to the platform codebase. Our governance model is based on the original model used by National 
BankAmericard Inc., founded in 1968, which was later renamed VISA. We are designing our governance model 
in a way that ensures the Governing Members can be trusted to do what’s in the best interest of Hedera, and 
not be unduly influenced by individual council members or node operators. In addition to Governing Members, 
Hedera will have a set of Advisory Members that contribute by providing advisory services as appropriate, 
but do not have voting privileges.

The Open Consensus model relates to the process by which the nodes join the network and reach a consensus 
on the order of transactions in the platform. The model is designed to prevent consolidation of power over 
consensus by encouraging the emergence of a decentralized network with, eventually, millions of nodes. It 
prevents collusion by a few to attack the system such as by counterfeiting the cryptocurrency, modifying the 
ledger inappropriately, or influencing the consensus order of transactions. We inhibit collusion by weighting 
the votes within the hashgraph algorithm of a particular node based on the node’s stake. Loosely stated, 
each node casts one vote for each coin of Hedera currency itowns. New node operators will join the network, 
and be paid for their services in maintaining the hashgraph. The number of nodes is expected to grow 
large very quickly, ensuring consensus voting privileges are distributed to many thousands of nodes. A full 
discussion of the staking model is included in the section below.

This system of Permissioned Governance with Open Consensus will build more public trust than a purely 
closed system. This is essential to the success of a global cryptocurrency.



20governance

PERMISSIONED GOVERNANCE

We designed the Hedera governance model to ensure that the organization can be trusted. The founding 
Governing Members will elect a Governing Board, and will decide if and when to expand the membership. 
As noted, Governing Members will have equal governing rights and limited terms, ensuring that 
governance is decentralized. Deliberation and debate will be open to all and controlled by none.

The Governing Members will also elect or appoint members to subcommittees that provide oversight 
of Hedera operations. The subcommittees will include but are not limited to the Technical Steering 
Committee, the Finance Committee, Joint Marketing and PR, and the Legal / Regulatory Oversight 
committee. The Governing Members are organizations that span a broad range of business sectors, and 
our objective is that, collectively, the membership will contribute industry-leading representation to the 
range of Hedera subcommittees.

Governing Members receive fees from operating nodes on Hedera. Node operators that are not Governing 
Members can also receive fees for their contribution to the network, but non-members do not receive 
council governance votes.

The Governing Board will appoint a Chief Executive Officer of Hedera, who will be a member of the 
Governing Board by right of that appointment, but cannot hold the chairmanship of the Governing Board. 
The Chairman will be elected by the Governing Board, but will have no executive or operating authority. 
The President will be responsible for preparing the agenda for the board meetings. Any matter can be put 
on the agenda by any member of the Governing Board.



21stability

Stability

The hard forks that Bitcoin and Ethereum have experienced have arguably damaged the network effect 
of their corresponding currencies, creating confusion and uncertainty in the marketplace. Similarly, 
the explosion of altcoins (and the dubious legitimacy and value of many of them) does not engender the 
necessary confidence in businesses and consumers considering adopting cryptocurrencies.

Historically, open source software developers have recognized the value of maintaining a single baseline, 
and ensuring that the best ideas from the community are included for the benefit of the whole. However, 
when combining an open source project with a cryptocurrency, the traditional incentive structure is 
turned upside down. The distributed ledger technologies that have been most widely adopted are also 
those that have split the most. This dynamic causes chaos in the industry, and directly impedes the 
adoption of public ledgers by mainstream markets. 

Hedera technical and legal controls ensure the platform will not fork into a competing platform and 
cryptocurrency. 



22stability

SIGNED STATE PROOFS

There is a shared state that is maintained by every node in the ledger (or in the shard, when the ledger 
is sharded). At the end of each round, each node calculates the shared state after processing all 
transactions that were received in that round and before. It then digitally signs a hash of that shared 
state, puts it in a transaction, and gossips it out to the community. Then it collects those signatures from 
all other nodes.
 
In this way, a node can have a copy of the state with a set of signatures that proves to a third party that 
this is the true, consensus state. This allows the node to construct a small file which is a verifiable proof 
that the state was truly the consensus.
 
The state is organized as a Merkle tree, so a third party can be given a proof that consists of a small part 
of the state, plus the path from there to the root of the Merkle tree (including siblings of those vertices in 
the tree), plus the signatures, and an address book history for the public keys.

The diagram below represents how a third party can be confident that the state it receives from one of 
the nodes does indeed represent the consensus state of the full network.

Technical controls

NODE

STATE IS TRUSTED 

AND ACCESSIBLE BY 

THIRD PARTIES

NODE

NODENODE



23stability

LEDGER ID

The proof must also include an “address book”, which is list of the public keys of all the members, along 
with each member’s stake (owned directly or by proxy). A third party will need this address book in order 
to check the signatures on the state (or portion of state).
 
The proof must also include an “address book history”. This is a sequence of address books, where each 
address book is signed by members from the previous address book. Any given address book must be 
signed by a set of members that own more than 2/3 of the stake, according to the membership and stake 
from the previous address book. This chain of address books extends back to the genesis address book, 
which is the initial members who created the ledger at the beginning.
 
The hash of the genesis address book is important. It serves as a unique identifier of the ledger. It is the 
“name” of the ledger.

HANDLING FORKS

If a small number of members want to split off from the group and create a new ledger that is a fork of 
the current one, they have the technical ability to do so, and can even create the initial state of their new 
ledger to be identical to the old ledger. So it is a fork. However, they will not be able to create an address 
book history reaching back to the genesis address book, with the members of each address book signing 
the next one, because the majority of members (who are not forking) will not sign the address book for the 
minority of members who are forking. This forces the new fork to have a new genesis address book, and 
therefore a new unique identifier, and therefore a new name. Consequently, those creating the fork will be 
unable to fool anybody into thinking the fork is the legitimate ledger.
 
When a client submits a transaction to a node to send to the ledger, the client receives in response 
from the node the cryptographic proof that their transaction has affected the shared state correctly. 
When Alice transfers cryptocurrency to Bob, both of them can receive a cryptographic proof that the 
transaction succeeded. This proof includes the signatures reaching back to the genesis address book. 
So they not only verify that the transfer occurred, they verify that it occurred on the correct ledger. If 
a ledger forks, no client will ever be confused about which ledger they are dealing with because only one 
ledger at a time can have that name.
 
Furthermore, if a 50/50 split were to happen, then neither side would be able to prove a connection to the 
genesis address book. It wouldn’t be a fork; it would be the complete destruction of one ledger, and the 
creation of two unrelated ledgers. This would greatly reduce the value to the nodes, because they would no 
longer be able to earn fees from the clients who want to access the original ledger. And all of the original 
cryptocurrency would, in a very real sense, cease to exist. This creates an enormous disincentive to forking.
 
In this way, confusing forks simply become impossible. Non-confusing forks become unappealing for the 
nodes. So there are strong incentives to avoid forks, even aside from any legal incentives.
 
The cryptographic proofs and unique identifiers are also critically important for secure sharding. They 
allow shards to send each other messages, with assurance that the message from a given shard was truly 
the consensus of that shard.



24stability

The Hedera codebase will be governed by the Hedera Hashgraph Council, and will be released for public 
review with Version 1.0. The codebase will be open review, meaning that anyone will be able to read the 
source code, recompile it, and verify that it is correct.

No license will be required to use the Hedera platform. No license will be required to write software that 
uses the services of the Hedera platform. No license will be required to build smart contracts on top of the 
Hedera platform. Applications built upon the Hedera platform can be open source or proprietary. They 
do not require any license or any approval from Hedera. Software developed using the platform APIs will 
not be encumbered in any way. Software developers will have complete ownership and discretion on the 
licensing they choose for their applications that use the Hedera platform. 

Swirlds owns the intellectual property rights in the hashgraph consensus algorithm. Hedera Hashgraph 
Council has a license from Swirlds to use the hashgraph consensus algorithm and associated technology 
for the Hedera distributed public ledger platform. As part of that license, Hedera Hashgraph Council will 
pay Swirlds 10% of revenue (with monthly minimums) and Swirlds will own 5% of Hedera coins. Swirlds will 
continue to require licenses for use of the hashgraph technology in permissioned networks, but no license 
will be required for distributed applications that run on Hedera’s public platform. Hedera and Swirlds will 
use the patent rights associated with the hashgraph algorithm defensively to legally prohibit the forking 
of the codebase and the creation of a competing platform and currency. Developers are free to build 
distributed applications on top of the Hedera platform with associated native tokens. 

In summary, Hedera will simultaneously embrace open review, while bringing stability to the platform and 
cryptocurrency by controlling the license. In this way, Hedera will provide a transparent codebase that will 
provide the stability that markets demand for mainstream adoption.

Legal Controls and Transparency



25REGULATORY COMPLIANCE

Regulatory Compliance

We expect that governments will soon require comparable visibility and oversight into public ledger 
financial transactions that they have now for traditional banking. In our view, for a public ledger to be 
adopted widely, it must be capable of enabling appropriate Know Your Customer (KYC) and Anti Money 
Laundering (AML) checks.

Hedera will enable KYC and AML through an Opt-In Escrowed Identity system.

The Escrowed Identity system allows a user’s real identity (as asserted by an accredited party acting as 
a Certificate Authority) to be logically bound to their ledger account so that, when using that account to 
move funds, appropriate KYC checks can be performed and AML protections enforced. The identity is 
escrowed because only on defined criteria or schedule need the government be informed.

The system is Opt-In - a user must explicitly choose to avail themselves of the mechanism and, if they 
do not, their account transactions will remain anonymous. This choice however may prevent them from 
engaging in certain financial transactions. 

The system is designed to provide the appropriate balance of 

1.	 Government visibility 
2.	 Security 
3.	 User privacy
 
Comparable to showing a driver’s license when creating a new bank account, the model has a user attach 
a hash of a digital certificate created by a recognized identity provider to their account. This attachment 
will take the form of a transaction sent out to the network. This transaction

1 .	 May need to be signed by both the user’s private key and that of the identity provider.
2.	 Can stipulate what parties are authorized to subsequently detach the hash (and so revoke 

the binding between the identity and the account).
 
As long as the attachment between account and certificate has not been revoked, by either the user 
or the identity provider, it can be used to establish that the account is bound to a known user whenever 
funds move in or out of that account. If and when appropriate, the identity provider can revoke the binding 
simply by sending a signed transaction to the network. 



26REGULATORY COMPLIANCE

As an example of how it might work, consider a user trying to send money from their Hedera account 
to a US bank. The user would provide to the bank the certificate as well as their account address. The 
bank would look up the account and confirm that the account had the corresponding hash for the 
certificate, and that the certificate was issued by a trusted identity provider. Only if all these checks were 
confirmed would the bank authorize the transaction and accept the funds.The bank might be asked by the 
corresponding government to send the certificate and transaction details, either in real-time (perhaps 
based on the amount of the transfer) or on a schedule. 

Critically for privacy, the user can revoke the binding at any time as well - removing the binding between 
their identity and the account. Doing so might prevent them from using that account in certain situations 
but that would be their choice.

Hedera is a founding member of the Distributed Ledger Foundation and will work with the broader 
DLT community and governments there to ensure that regulatory requirements can be satisfied, while 
maintaining privacy and security.



27REGULATORY COMPLIANCE

Conclusion

Hedera directly resolves the five fundamental obstacles to mainstream market adoption of public 
ledger technology: Performance, Security, Stability, Governance, and Regulatory Compliance. 
The hashgraph data structure and consensus algorithm provides a best-in-class, unmatched 
combination of performance and security.  The Hedera platform and governance council will 
provide transparency, open innovation with platform stability, tools to enable opt-in KYC and AML, 
and global, cross-industry expertise to provide governance and decision making for a globally 
distributed network and cryptocurrency. 



28a r c h i t ec t u r e

Part 2
Architecture



29architecture

INTERNET

HASHGRAPH CONSENSUS

SOLIDITY

SMART

CONTRACTS

FILE STORAGECRYPTOCURRENCY



30architecture

INTERNET LAYER

The nodes are all computers on the internet, communicating by TCP/IP connections protected by TLS 
encryption with ephemeral keys for perfect forward secrecy. Nodes are addressed by IP address and port, 
rather than by symbolic names, so attacks on the DNS system will not affect the network.

HASHGRAPH CONSENSUS LAYER

The nodes take transactions from clients and share them throughout the network with a gossip protocol. 
Then all nodes run the hashgraph consensus algorithm to reach agreement on a consensus timestamp for 
each transaction and its consensus order in history. Each node then applies the effects of the transactions 
in consensus order to modify its copy of the shared state. In this way, all nodes maintain an identical 
consensus state (within any given shard).

SERVICES LAYER

	 CRYPTOCURRENCY

	 The cryptocurrency is designed to be fast, which leads to low transaction fees, making very 
small microtransactions practical. When the Hedera platform is running at scale, any user 
will be able to run a node in the network and earn cryptocurrency payments for doing so. 
Any user can create an account by simply creating a key pair, without any name or address 
attached to it. Optionally, provisions are made to allow a user to attach hashes of identity 
certificates. These can come from any third party certificate authority or identity authority 
that the user chooses. This is intended to allow regulatory compliance, for cryptocurrency 
accounts that will be used in a jurisdiction with Know Your Customer (KYC) or Anti-Money-
Laundering (AMC) laws. More detail is given in the Regulatory Compliance section.

	 FILE STORAGE

	 The file system allows users to store information, with consensus on exactly what is stored 
and what is not stored. Every node in the shard stores the same files, so they will not be 
lost if one of the nodes crashes. Stored information can only be deleted by those that were 
given permission. In this way, the file system can act as a revocation service. For example, in 
the future, a user might be issued a driver’s license from the Department of Motor Vehicles 
(DMV), and both the user and the DMV digitally sign the transaction that puts a hash of it 
into the ledger. Both have the right to remove the hash of the license. The user can choose 
to prove to someone that they have a valid license, by giving that person a copy of the 
license file, so the person can check whether the hash is still stored in the ledger. If the DMV 
revokes the license, it would also delete the hash, to show the world that the license is no 
longer valid. If the user tries to store the hash again, without a signature from the DMV, 
it will be evident that the hash was stored only by the user without DMV cooperation, and 
would not be considered valid evidence of the user’s right to drive. 

	 Files are actually stored as Merkle trees, but we provide Java classes to allow developers to 
manipulate them.



31architecture

	 We give developers Java code to manipulate a Merkle tree as if it were a file system. They 
see directories, subdirectories, files, and they can change the contents of files, and names 
of directories, and move things around, and copy and paste, and yet, underneath, it’s all 
being stored as a Merkle tree automatically. This allows us to give proofs that a file is part 
of the consensus state. Also, users can store an entire directory in the Hedera file system.

	 We not only store Merkle trees, we store Merkle DAGs, which means that if two files have 
some bytes in common, we might only store one copy of the common bytes.

	 A file can be accessed by its hash, so people can rely on the fact that it is immutable. But 
it also has a File ID. Its owner can create a new file, and make the File ID to be associated 
with the new file instead of the old one. In this way, it is possible for users to always 
find the latest version of a file. They just access the File ID instead of the hash. So files 
are both securely immutable and securely non-immutable, at the same time. If a file is 
accessed by its hash, then it never changes. If it is accessed by its File ID, then the latest 
version is found.

	 SMART CONTRACTS

	 The Hedera ledger can run smart contracts written in Solidity. There currently exist large 
libraries of Solidity smart contract code, which can be run unchanged on Hedera. These 
allow for distributed applications to be easily built on top of Hedera. 



32architecture

Initially, the Hedera network will likely be a small number of nodes all in a single shard. As Hedera grows, 
it will gain a sufficient number of nodes to justify multiple shards. Sharding can offer performance 
advantages as every node need not process every transaction. Consensus can consequently proceed in 
parallel. Shards trust each other, so one shard will honor requests to move cryptocurrency or to put a 
hold on various resources made by another shard - as long as those requests can be proven to reflect the 
consensus of the requesting shard. This allows the multi-shard ledger as a whole to achieve asynchronous 
Byzantine fault tolerance, and to prevent double spends or other illegal states, because each individual 
shard has those properties, and because all messages between them contain proofs that they are the 
consensus of that shard.

Nodes will be randomly grouped into different shards, within which consensus on transactions will be 
established as normal. Each shard is made up of a subset of the nodes, all of which share the same state, 
which is a subset of the state of the entire ledger. Transactions are placed into consensus order within 
individual shards in the normal manner - all nodes within a shard contribute only to the consensus for 
transactions that originate in that shard. The assignment of nodes to shards is performed randomly by 
a master shard, which assigns new nodes to a shard once a day, and also moves nodes between shards as 
necessary to ensure that each shard has a large total amount being staked, and that no one member of a 
shard has a large fraction of that amount.

Shards communicate through the exchange of messages between members of the different shards. 
All such messages are push (rather than pull). Each shard (its members) maintains a queue of outgoing 
messages to each of the other shards. Each shard remembers the sequence number of the last message 
it processed from each of the other shards. A message is sent from shard Alpha to shard Beta by nodes 
in Alpha randomly contacting nodes in Beta, to transfer the message, along with a proof that it is part of 
the consensus state of the Alpha shard. They continue doing this until one of the Beta members replies 
with a proof that the Beta shard shared state includes a sequence number indicating that this message 
was received and processed. In this manner, transactions that impact addresses in different shards can 
be appropriately recorded into each shards state, and so the entire state of the entire ledger.

More details are given in the Sharding appendix.

Sharding



33C r y p to eco  n om  i c s

Part 3
Cryptoeconomics



34Cryptoeconomics

To achieve transparency, and the performance advantages of sharding, it is necessary to allow 
anonymous individuals to become nodes in the network. Then, to avoid Sybil attacks, we implement 
a system where each node has an influence on the consensus that is proportional to the amount of 
cryptocurrency that it owns. Then, it becomes important to ensure that most of the cryptocurrency is 
actually being staked, so that the network continues to run.

The Hedera ledger will use proof-of-stake. When a node joins the system, it must declare one or more 
accounts that it can control, and prove that it has the private keys for those accounts. From then on, 
the amount of cryptocurrency in those accounts will be used to weight its votes in the hashgraph virtual 
voting algorithm. Additionally, it will be paid to serve as a node, with that payment proportional to the 
amount of cryptocurrency in those accounts - the stake effectively earning interest. It is still free to spend 
that cryptocurrency at any time. Consequently, a potential disincentive of bonded proof of stake models - 
that of nodes unwilling to stake for fear of the associated loss of liquidity - is avoided.

In addition, a mechanism called proxy staking allows a person who owns coins but does not run a node 
to nevertheless stake those coins and so earn interest by “proxy staking” their account to a node. 
That means giving another account credit for their coins, and allowing the node to use that stake. The 
payments for running the node (proportional to the amount staked) are then split between the node and 
the owner of the coins being proxy staked. The ratio for that split is negotiated between the two parties. 
The funds that are being proxy staked still remain under the control of their owner. The owner can turn 
off or redirect the proxy staking to another node at any time. They can also spend the cryptocurrency at 
any time, though again that will reduce the amount they receive in payment for staking.

A node must have at least some cryptocurrency in its account for it to be able to influence consensus  
or to receive payment for operating as a node, or to pay fees associated with sending transactions to  
the ledger.

Staking and proxy staking



35Cryptoeconomics

Proxy staking allows those who do not run nodes to still be able to earn some interest on their 
cryptocurrency and by encouraging this practice raises the bar for some actor being able to gain 
influence over a third of the entire stake. And those who do run nodes will be able to increase their 
profit. The split of profits between nodes and proxy stakers will be negotiated between the two. The 
barrier to entry is very low for running a node and attracting proxy stakers. So it is expected that 
there could be a large ecosystem of nodes that are competing for proxy stakers. Consequently it will be 
difficult for one attacker to gain proxy staking control of a third of the entire stake.

OWNER NODE

PROXY
STAKE

STAKE

PAYMENTS

PAYMENTS

STAKEOWNED

PROXIED

The proxy staking model is shown below. 
A node can stake both coins it owns and 
those proxied to it. The fees associated 
with that staking are shared between the 
node and those proxy staking. In practice, 
a node is expected to have many accounts 
proxying their stake to it.



36Cryptoeconomics

Users pay fees to use the platform, such as when they transfer cryptocurrency coins, or add items to 
the ledger. Because the Hedera network has high throughput and doesn’t require proof-of-work, we 
anticipate the fees to be a small fraction of other public platforms in the market today. 
Nodes in the Hedera ledger are compensated for the computing, bandwidth, and storage resources they 
use in establishing consensus and providing services. There are several types of payments and fees:

	 NODE FEE  – A client can use the services of the platform by contacting a node, which 
will submit transactions on the client’s behalf. For example, if a client wants to transfer 
cryptocurrency from their account to another, they will contact a node, and give it the 
signed transaction. The node will then put that transaction into the next event it creates, 
and gossip it out to the network so that it can be entered into consensus. The client 
reimburses the node for this effort by giving it a node fee. This fee is negotiated between 
client and node, and can be set by market forces as nodes set their fees. This is the only fee 
that is not set by Hedera.

	 SERVICE FEE  – A client will pay a fee for any Hedera service. For example, if a client 
submits a transaction to store a file in the ledger, the fee will be calculated according to 
a schedule determined by Hedera. This is calculated as a fee per file plus an amount per 
byte per second that the file will be stored. A single transaction both requests the service 
and authorizes paying for it. If the client’s account has insufficient funds at the point the 
transaction takes effect in the consensus order, then the client is not charged, and the file 
is not stored. But if there are sufficient funds, then simultaneously the client is charged 
and the file is stored.

	 TRANSACTION FEE  – There is a fee for each transaction handled by the network, to 
cover the cost to nodes of gossiping it, temporarily storing it in memory, and calculating 
the consensus on the event containing it. The fee is calculated as an amount per 
transaction plus an amount per byte within the transaction. When a node includes a 
transaction in an event that it creates the node will be charged the transaction fee when 
consensus is reached on that transaction. If the transaction was initiated by a client, that 
client will compensate the node for that transaction fee the node paid.

The three different fee types are shown in the diagram below, indicating from which account they are 
taken, and to which they are added. Clients pay nodes fees directly to the node that they requested to 
process their transaction. Clients pay transaction fees to the same node, but those fees will be passed 
onto Hedera. Clients pay service fees direct to Hedera. All fee payments are made through the network 
coming to consensus on a gossiped transaction that authorized the payment.

Payments and fees



37Cryptoeconomics

Hedera collects services and transaction fees on behalf of all the nodes processing the transactions and 
performing the services. Hedera uses those collected fees to fund two different types of payments: 

	 INCENTIVE PAYMENT  – Once a day, payments are made from the Hedera account to 
nodes, to incentivize them to serve as nodes. To be paid, a node must have been online 
for the full day, according to thresholds defined by Hedera (e.g., requiring that the node 
contribute at least one event each to at least 90% of the rounds during that 24 hour 
period). A node is paid proportional to the amount of cryptocurrency it is staking (both 
owned by itself, and proxy staked to it by others).

	 DIVIDEND PAYMENT  – Periodically, Hedera may make payments to the Governing 
Members to reward them for their role in governance. The fees that are collected by 
Hedera are divided between incentive payments and dividend payments, as determined 
by Hedera.

The fee model is designed to allocate costs and risks appropriately.

NODE FEES

NODE

SERVICE FEES

TRANSACTION FEES

IN
C

EN
T

IV
E PAY

M
EN

T
S



38Cryptoeconomics

The biggest resource costs are paid for by service fees, and those resource costs (e.g., storing a large file) 
are never incurred until proper payment has been made by the client.

The smaller resource costs of gossiping and reaching consensus on the transactions themselves are paid 
for by the transaction fees. The ledger as a whole is sure to get the fees, because they are paid by the 
node, using the cryptocurrency being staked. And the node can do this without risk, by requiring that the 
client’s payment for it be completely processed before the node submits it. (Or, the node can choose to 
submit it immediately, with a small risk of not being paid).

The smallest resource cost is the cost for the node to submit the tiny transaction that does nothing but 
transfer a fee from the client to the node. The risk of an attack seems low, because it requires careful 
timing on the part of the attacker, and will require the attacker to actually pay fees which might exceed 
the amount the attacker is tricking the node into spending. Furthermore, nodes can always use other 
mechanism, such as charging reduced fees to repeat customers, to further reduce the probability of this 
attack being frequent.

So at each level of the system, costs are paid for, and economic incentives are aligned.

When a client contacts a node for help submitting a transaction to the network to perform some service 
for the client, the client gives the node two transactions:

1.	 A service transaction that includes both the requested service and an authorization to pay 
the associated service fee.

2.	 A payment transaction that will pay the node an amount equal to the the sum of: 

a.	 The node fee
b.	 A transaction fee for the service transaction and
c.	 A transaction fee for the payment transaction.

The node first checks that the client’s account has sufficient funds to pay the payment transaction. If 
so, it submits the payment transaction to the network. After that payment transaction has reached 
consensus, if it is valid, only then will the node submit the service transaction to the network. 



39Cryptoeconomics

This two phase processing is shown below. The blue arrow represents the payment transaction, the green 
arrow the (fundamental) service transaction.

Consider how the above model minimizes risks for all participants.

By sending out the payment transaction first, the node minimizes its risk of non-payment from the client. 
The node risks only the chance of paying the transaction fee for this single, very small transaction. Even in 
the case that the client’s account is depleted during the short period between when the node first checks 
the client’s account balance until the node submits the transaction, the node loses only that. 

CLIENT

TRANSACTION 1

TRANSACTION 1

TRANSACTION 2

TRANSACTION 2

ACKNOWLEDGEMENT

ACCEPT OR DECLINE

NODE OTHER NODES

CHECK IF THE CLIENT ACCOUNT 

BALANCE HAS ENOUGH TO COVER  

ALL FEES

WAIT FOR CONSENSUS

WAIT FOR CONSENSUS



40Cryptoeconomics

The client risks that it pays the two transaction fees and node fees without the node actually submitting the 
service transaction to the network. But the client does not risk the service fee, since that is only paid if the 
node submits the service transaction to the network. The service fee may be the largest of all these, so the 
client is likely only risking a very small amount. The client can also include in the second transaction a second 
node fee, to incentivize the node to submit the service transaction. This reduces the risk for the client.

Because the service is only performed if the payment occurs, there should not be a risk to Hedera.
 
An optimization is possible. If the actual service is a transaction with a small number of bytes, then the 
two transactions can be merged into a single transaction. For example, if the client wants to transfer 
cryptocurrency to another account, the client might create a single transaction that both performs that 
transfer, and also pays the node the sum of the transaction fee and node fee. Then, the client has little risk, 
because the node is paid for submitting the transaction. If the node fails to submit it, then the node is not 
paid. The fees incentivize the node to submit it correctly.



41CRYPTOECONOMICS

The Roadmap to Scale

The following are the steps by which we expect the network will grow from concentrated nodes and 
stake to widespread nodes and stake. These steps will not be distinct. They simply represent a smooth 
growth evolution of the network and currency. 

STEP 1	 The central Hedera treasury holds most of the coins, and proxy stakes these to the 
Hedera Governing Members. The members operate nodes with the treasury coins 
proxied to them. Coins held by individuals that use the software wallet from Hedera also 
proxy their coins to the member nodes. During this step, some coins from the Hedera 
treasury are distributed to the general population.

STEP 2	 Advisory Members and other trusted parties are able to stand up nodes with the coins 
being proxied to them in addition to the Governing Members.  The treasury and the 
Hedera wallet (by default) proxies to both the Governing Members and the Advisory 
Members. Over time the distribution of the staking becomes more even across  
all nodes. More coins continue to be distributed from the Hedera treasury to the  
general population.

STEP 3	 Individuals who are interested may go through a Know-Your-Customer process and then 
also receive staking of coins from the Hedera treasury and the default Hedera wallet 
software. More coins continue to be distributed out of Hedera to the general population. 
Anonymous individuals can also run nodes and receive staking of coins. The Hedera 
wallet software will not proxy to them, but they may be able to receive proxying from 
3rd-party wallet software.

Step 4: As the coins are distributed widely, and competing wallet software programs arise, there will be 
a market for proxying that is independent of Hedera. Eventually all of the coins are widely distributed, 
there is a market of wallet software, and a market of nodes competing for the proxy staking. 

In this way, all of the coins start in one account, and the initial Hedera wallet software defaults to 
proxying just to Governing Members, but over time both the coins and the proxying gain wider and 
wider distribution until they are distributed across millions of nodes and accounts.



42ACKNOWLEDGEMENTS

Acknowledgements

We gratefully acknowledge the contributions and help from our advisors, Natalie Furman,  
Tom Trowbridge, Edgar Seah, Jordan Fried, Christian Hasker, Arlan Harris, Paul Bugeja, Alex Godwin, 
Ken Anderson, Patrick Harding, Zenobia Godschalk, and George Samman. 

This document is issued by Hashgraph Consortium, LLC, a company incorporated in Delaware, 
United States.  It constitutes general information only and may be updated. It also contains forward-
looking statements that are based on the beliefs and intentions of the authors, as well as certain 
assumptions made by and information available to them. Such statements, assumptions and 
information are based on analysis and sources considered appropriate and reliable, but there is no 
assurance as to their accuracy or completeness.

This document does not constitute an offer or sale of securities. Any offer or sale will occur only based 
on definitive offering documents.

The project as envisioned in this document is under development, is subject to change and may not 
be available in all jurisdictions. No representation or warranty is given as to the achievement or 
reasonableness of any plans, future projections or prospects. This document does not constitute 
any advice or offer of any kind, nor should it be relied upon for any purpose. This document is issued 
in English only. Any translation is for reference purposes only and is not certified by Hashgraph 
Consortium, Inc. or any other person. The English version of this document prevails to the extent of 
any inconsistency with any translation. Please obtain any necessary professional advice.

All rights reserved. Hashgraph Consortium, LLC, 2018.



43a p p e n d i c e s

Appendices



44appendices

Appendix 1: Team

LEEMON BAIRD, CO-FOUNDER, CTO, AND CHIEF SCIENTIST

Leemon Baird is the inventor of the hashgraph distributed consensus 
algorithm, and is the Co-founder and CTO of Swirlds Inc. With over 20 
years of technology and startup experience, he has held positions as 
a Professor of Computer Science at the Air Force Academy and as a 
senior scientist in several labs. He has been the co-founder of several 
startups, including two identity-related startups, which were acquired. He 
received his PhD in Computer Science from Carnegie Mellon University, 
and has multiple patents and publications in peer-reviewed journals and 
conferences in computer security, machine learning, and mathematics.

MANCE HARMON, CO-FOUNDER & CEO

Mance Harmon is an experienced technology executive and entrepreneur 
with more than 20 years of strategic leadership experience in 
multinational corporations, government agencies and high-tech startups, 
and is Co-founder and CEO of Swirlds Inc. Prior experience includes 
serving as the Head of Architecture and Labs at Ping Identity, Founder 
/ CEO of two tech startups, the senior executive for product security at 
a $1.7B revenue organization, Program Manager for a very-large scale 
software program for the Missile Defense Agency, the Course Director 
for Cybersecurity at US Air Force Academy, and research scientist 
in Machine Learning at Wright Laboratory. Mance received a MS in 
Computer Science from the University of Massachusetts, and a BS in 
Computer Science from Mississippi State University.

TOM TROWBRIDGE, PRESIDENT

Tom Trowbridge is President of the Hedera Hashgraph Council. Prior to 
joining Hedera, Tom started and ran the New York office for UK-based 
Odey Asset Management. Before Odey, Tom held various positions at 
Lombard Odier, Atticus Capital and Goldman Sachs. He started his career 
in 1996 as an investment banker in the telecom group at Bear, Stearns & 
Co., and subsequently spent three and and a half years at the telecom and 
media private equity firm Alta Communications where he executed 10 deals 
in technology, telecom and media and served on two boards. Tom has a BA 
from Yale University and an MBA from Columbia University, where he was a 
member of Beta Gamma Sigma.



45appendices

JORDAN FRIED, VP OF BUSINESS DEVELOPMENT

Jordan Fried is a blockchain evangelist and self-professed crypto 
capitalist. He’s an investor in Swirlds Inc, the company behind the 
Hashgraph consensus algorithm. Previously Jordan was the Co-
Founder and CEO of Buffered VPN, the fastest growing personal VPN 
service online which was acquired in the first quarter of 2017. Jordan 
is an investor in companies such as Hive.org and Buffer App. He’s 
been featured in Entrepreneur Magazine, Inc.com, Wired.com, Time 
Magazine and Success.com.

NATALIE FURMAN, GENERAL COUNSEL

Natalie Grunfeld Furman is General Counsel for Hedera Hashgraph 
Council and Swirlds, Inc. She was previously a senior associate 
at Paul Hastings LLP, where her practice focused on intellectual 
property, unfair competition, and rights of privacy and publicity. 
Prior to law school, Natalie started her career in Silicon Valley, 
providing strategic advice to high tech startups. She was Director 
of Strategy and Business Development at an online group 
communication startup acquired by Yahoo! Inc., and Director of 
Business Development for a technology startup developing a global 
collaborative supply chain platform. Natalie received her BA in 
Anthropology, with honors, from Stanford University and her J.D. 
from Columbia University School of Law.



46appendices

Appendix 2: Sharding

Initially, the network may consist of a smaller number of nodes in a single shard. As the network grows, it 
will gain sufficient nodes to support multiple shards. Those shards will work in the following way.

A transaction is always submitted to a specific shard. Within a shard, every node receives all of that 
shard’s transactions, and every node maintains an identical shared state. Each shard can store both 
cryptocurrency accounts and files. Every shard can run smart contracts.
 
A shard uses the hashgraph consensus algorithm to reach a consensus order for its transactions. Each 
shard must be able to trust the consensus decision of each of the other shards. Therefore, each shard 
must be composed of randomly-chosen members, and must be large enough so that it can be trusted to 
never have 1/3 of its staked cryptocurrency being owned by malicious nodes.
 
If a transaction involves only resources within a given shard, then when that point in the consensus order 
is reached, the transaction performs its effect. For example, a transaction might move cryptocurrency 
between two accounts within the same shard. Or it might save a file within that shard, and pay for it with 
an account in that shard. In those cases, the cryptocurrency transfers or the file is stored immediately, at 
the point where the transaction occurs in the consensus order.
 
If a transaction involves resources in different shards, then it will trigger inter-shard messages. For 
example, if the cryptocurrency account Alice is in shard Alpha, and account Bob is in shard Beta, then 
Alice creates and signs a transaction to move cryptocurrency from Alice to Bob. She submits that 
transaction to a node in the Alpha shard, and all of the nodes in Alpha reach consensus on its order. At the 
point where this event occurs in the consensus order, Alice’s account balance is decreased by the amount 
being sent, and a message to the Beta shard is generated. Each shard maintains a queue of outgoing 
messages to be sent to each of the other shards. So this new message is added to the queue that Alpha 
maintains for messages to send to Beta. Each message in a given queue has a 64-bit sequence number, 
which starts at zero when the network is first created, and then increments with each new message sent. 
 
Each member of Alpha will, at random intervals, check to see if there are any messages in any outgoing 
queues, and attempt to send one of the queues. When they see that there are messages intended for 
Beta, they will call a random member of Beta, and give them all messages in the queue, along with the 
proof that this queue is part of the current signed state for Alpha.
 
When a member of Beta receives such a list of messages from the member of Alpha, the Beta member 
submits a transaction to Beta that has the messages and the proof that they are part of the signed 
state. If they see that a message has already been submitted, then they won’t submit it again. Though 
sometimes the same message may be submitted twice at the same time. In that case, the sequence 
numbers will match, so the duplicate will be ignored, and no harm is done.
 
All messages between two particular shards will be processed in order of sequence number. So, if Alpha 
sends a message to Beta, and it is put into a transaction within Beta, then when that transaction reaches 
consensus, at that point in the consensus order, its sequence number will be checked. If it is the next 



47appendices

message in sequence, then its effect is performed immediately. If the sequence number shows that one 
or more other messages have been skipped, then it has no effect and is ignored. In that case, the other 
messages will eventually reach consensus, and then the skipped message will be submitted again, and will 
have an effect.
 
When Beta processes a message with Alpha with the expected next sequence number from Alpha, then 
it increments the count of the number of messages from Alpha that have been processed. So each shard 
maintains a single number for each of the other shards, which is the latest sequence number from that 
other shard that has been processed.
 
After Alpha has sent to the message to Beta, that message remains in the outgoing queue, and attempts 
will repeatedly be made to send it. Eventually, a member of Apha will contact a member of Beta to send 
that message, but will receive back a proof that the message has already been processed. That proof 
shows that the signed state contains Beta’s sequence count for messages received from Alpha, and that 
the count is now higher than the message in the queue. At that point, the member of Alpha wraps the 
proof in a transaction, and gossips it out to Alpha. When it reaches consensus order, at that point the 
message is deleted from the outgoing queue in the shared state.
 
For the example of transferring cryptocurrency from Alice to Bob, we could say that there is “finality” 
when we know that the transfer is valid, that Alice had sufficient funds, and that Bob will certainly receive 
the funds. If this transfer is for Alice to buy a product from Bob, then finality is point in time where it is 
safe for Bob to give the product to Alice. The time to finality is actually as short as the consensus time 
for a single shard. Because once consensus has been reached on that initial transaction, it is certain that 
Alpha will send a message to Beta, and that Beta will process it, and that Bob’s account will receive the 
transfer. So finality is as fast as consensus.
 
If a transfer is from one source account to two destination accounts, finality is still just as fast. As soon as 
the initial transaction reaches consensus, it will be known whether it had sufficient funds, and so whether 
the two messages will be sent.
 
However, if a single transaction is to transfer from two source accounts to one destination account, and 
the source accounts are in different shards, then finality will be slower. Because it will have to involve 
another type of message: a “hold”, which is later followed by a “release”.
 
For example, suppose a transaction is created to transfer 2 coins from Alice in Alpha shard and 3 coins 
from Bob in Beta shard, with the 5 coins being transferred to Gina in Gamma shard. This is intended to be 
atomic, so that nothing will happen unless Alice and Bob both have sufficient funds for the transfer.
 
To achieve this, the transaction must be signed by both Alice and Bob, and must be submitted to the 
Alpha shard. When it reaches consensus, it causes a “hold” to be put on 2 coins in Alice’s account. This 
means that 2 coin’s worth of the account is temporarily frozen. While it is frozen, Alice is still free to 
receive funds and to transfer out funds, but can’t do any transfer that would decrease her balance to less 
than 2 coins.
 



48appendices

At the same time that Alpha puts a hold on 2 coins for Alice, it also sends a message to Beta requesting a 
hold of 3 coins for Bob. This message does not need to be signed by Bob, because it is coming from Alpha, 
and Alpha has already checked that Bob had signed the transaction.
 
When the message is received and reaches consensus, Beta will attempt to put a hold on Bob’s account 
for 3 coins. If he has sufficient funds, it succeeds. If he has less than 3 coins, then it fails, and no hold is put 
on him at all. Beta then sends back to Alpha a message saying whether the hold was successful.
 
When Alpha receives a reply that the hold was successful, Alpha then decrements Alice’s account by 2 
coins (which also removes the hold), and sends a message to Beta saying to decrement Bob’s account by 3 
coins (removing his hold) and sending a message to Gamma to increment Gina’s account by 5 coins. 
 
On the other hand, if Beta’s message said the hold failed because Bob did not have sufficient coins, then 
Alpha simply released the hold on Alice’s account, and considers the entire transaction to have failed. 
None of the three balances change.
 
Note that when this all started, with Alpha processing the initial transaction, it was possible for Alpha to 
calculate how many messages would be involved in the entire process: 4 messages in this example. Alpha 
will therefore check that the transaction included authorization of a service fee that included the fee for 
the service of sending those 4 messages. Hedera then automatically makes payments to the nodes that 
created each of the message transactions that were handled (and not ignored as duplicates). This acts 
as incentive for nodes to do the work of sending messages to other shards, receiving confirmations of 
receipt from them, and creating the transactions that contain those messages and confirmations.



49appendices

Appendix 3: Hashgraph



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM:
FAIR, FAST, BYZANTINE FAULT TOLERANCE

LEEMON BAIRD
MAY 31, 2016

SWIRLDS TECH REPORT SWIRLDS-TR-2016-01

Abstract. A new system, the Swirlds hashgraph consensus algorithm, is pro-
posed for replicated state machines with guaranteed Byzantine fault tolerance.
It achieves fairness, in the sense that it is difficult for an attacker to manip-
ulate which of two transactions will be chosen to be first in the consensus
order. It has complete asynchrony, no leaders, no round robin, no proof-of-
work, eventual consensus with probability one, and high speed in the absence
of faults. It is based on a gossip protocol, in which the participants don’t
just gossip about transactions. They gossip about gossip. They jointly build a
hashgraph reflecting all of the gossip events. This allows Byzantine agreement
to be achieved through virtual voting. Alice does not send Bob a vote over
the Internet. Instead, Bob calculates what vote Alice would have sent, based
on his knowledge of what Alice knows. This yields fair Byzantine agreement
on a total order for all transactions, with very little communication overhead
beyond the transactions themselves.

Keywords: Byzantine, Byzantine agreement, Byzantine fault tolerance, replicated
state machine, fair, fairness, hashgraph, gossip about gossip, virtual voting, Swirlds

Contents

List of Figures 2
1. Introduction 2
2. Core concepts 4
3. Gossip about gossip: the hashgraph 5
4. Consensus algorithm 6
5. Proof of Byzantine fault tolerance 12
6. Fairness 19
7. Generalizations and enhancements 20
8. Conclusions 24
References 25
9. Appendix A: Consensus algorithm in functional form 26

1Revision date: February 16, 2018
1



2 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

List of Figures

1 Gossip history as a directed graph 5
2 The hashgraph data structure 7
3 Illustration of strongly seeing. 8
4 Pseudocode: the Swirlds hashgraph consensus algorithm 11
5 Pseudocode: the divideRounds procedure 12
6 Pseudocode: the decideFame procedure 13
7 Pseudocode: the finalOrder procedure 14

1. Introduction

Distributed databases are often required to be replicated state machines with
Byzantine fault tolerance. Some authors have used the term “Byzantine” in a weak
sense, such as assuming that attackers will not collude, or that communication is
weakly asynchronous [1]. In this paper, “Byzantine” will be used in the strong
sense of its original definition [2]: up to just under 1/3 of the members can be
attackers, they can collude, and they can delete or delay messages between honest
members with no bounds on the message delays. The attackers can control the
network to delay and delete any messages, though at any time, if an honest member
repeatedly sends messages to another member, the attackers must eventually allow
one through. It is assumed that secure digital signatures exist, so attackers cannot
undetectably modify messages. It is assumed that secure hash functions exist, for
which collisions will never be found. This paper proposes and describes the Swirlds
hashgraph consensus algorithm, and proves Byzantine fault tolerance, under the
strong definition.

No deterministic Byzantine system can be completely asynchronous, with un-
bounded message delays, and still guarantee consensus, by the FLP theorem [3].
But it is possible for a nondeterministic system to achieve consensus with prob-
ability one. The hashgraph consensus algorithm is completely asynchronous, is
nondeterministic, and achieves Byzantine agreement with probability one.

Some systems, such as Paxos [4] or Raft [5] use a leader, which can make them
vulnerable to large delays if an attacker launches a denial of service attack on the
current leader [6]. Many systems can even be delayed by just a single bad client
[7]. In fact, the latter paper suggests that systems with such vulnerabilities might
better be described as “Byzantine fault survivable” rather than “Byzantine fault
tolerant”. Hashgraph consensus does not use a leader, and is resilient to denial of
service attacks on small subsets of the members.

Other systems, such as Bitcoin, are based on proof-of-work blockchains [8]. This
avoids all the above problems. However, such systems cannot be Byzantine, because
a member never knows for sure when consensus has been achieved; they only have
a probability of confidence that continues to rise over time. If two blocks are mined
simultaneously, then the chain will fork until the community can agree on which
branch to extend. If the blocks are added slowly, then the community can always
add to the longer branch, and eventually the other branch will stop growing, and can
be pruned and discarded because it is “stale”. This leads to inefficiency, in the sense



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 3

that some blocks are mined properly, but discarded anyway. It also means that it
is necessary to slow down how fast blocks are mined, so that the community can
jointly prune branches faster than new branches sprout. That is the purpose of the
proof-of-work. By requiring that the miners solve difficult computation problems
to mine a block, it can ensure that the entire network will have sufficiently long
delays between mining events, on average. The hashgraph consensus algorithm is
equivalent to a block chain in which the “chain” is constantly branching, without
any pruning, where no blocks are ever stale, and where each miner is allowed to
mine many new blocks per second, without proof-of-work, and with 100% efficiency.

Proof-of-work blockchains also require that electricity be wasted on extra compu-
tations, and perhaps that expensive mining rigs be bought. A proof-of-expired-time
system [9] can avoid the wasted electricity (though perhaps not the cost of mining
rigs) by using trusted hardware chips that delay for long periods, as if they were
doing proof-of-work computations. However, that requires that all participants
trust the company that created the chip. Such trust in chip venders exists in some
situations, but not in others, such as when FreeBSD was changed to not rely solely
on the hardware RDRAND instruction for secure random numbers, because “we
cannot trust them any more” [10].

Byzantine agreement systems have been developed for Byzantine agreement that
avoid the above problems. These systems typically exchange many messages for
the members to vote. For n members to decide a single YES/NO question, some
systems can require O(n) messages to be sent across the network. Other systems
can require O(n2), or even O(n3) messages crossing the network per binary decision
[11]. An algorithm for a single YES/NO decision can then be extended to deciding
a total order on a set of transactions, which may further increase the vote traffic.
Hashgraph sends no votes at all over the network, because all voting is virtual.



4 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

2. Core concepts

The hashgraph consensus algorithm is based on the following core concepts.
• Transactions - any member can create a signed transaction at any time. All

members get a copy of it, and the community reaches Byzantine agreement
on the order of those transactions.

• Fairness - it should be difficult for a small group of attackers to unfairly
influence the order of transactions that is chosen as the consensus.

• Gossip - information spreads by each member repeatedly choosing another
member at random, and telling them all they know

• Hashgraph - a data structure that records who gossiped to whom, and in
what order.

• Gossip about gossip - the hashgraph is spread through the gossip protocol.
The information being gossiped is the history of the gossip itself, so it is
“gossip about gossip”. This uses very little bandwidth overhead beyond
simply gossiping the transactions alone.

• Virtual voting - every member has a copy of the hashgraph, so Alice can
calculate what vote Bob would have sent her, if they had been running
a traditional Byzantine agreement protocol that involved sending votes.
So Bob doesn’t need to actually her the vote. Every member can reach
Byzantine agreement on any number of decisions, without a single vote
ever being sent. The hashgraph alone is sufficient. So zero bandwidth is
used, beyond simply gossiping the hashgraph.

• Famous witnesses - The community could put a list of n transactions into
order by running separate Byzantine agreement protocols on O(n log n)
different yes/no questions of the form “did event x come before event y?” A
much faster approach is to pick just a few events (vertices in the hashgraph),
to be called witnesses, and define a witness to be famous if the hashgraph
shows that most members received it fairly soon after it was created. Then
it’s sufficient to run the Byzantine agreement protocol only for witnesses,
deciding for each witness the single question “is this witness famous?” Once
Byzantine agreement is reached on the exact set of famous witnesses, it is
easy to derive from the hashgraph a fair total order for all events.

• Strongly seeing - given any two vertices x and y in the hashgraph, it can
be immediately calculated whether x can strongly see y, which is defined
to be true if they are connected by multiple directed paths passing through
enough members. This concept allows the key lemma to be proved: that
if Alice and Bob are both able to calculate Carol’s virtual vote on a given
question, then Alice and Bob get the same answer. That lemma forms the
foundation for the rest of the mathematical proof of Byzantine agreement
with probability one.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 5

Alice! Bob! Carol! Dave! Ed!

Time!

Figure 1. Gossip history as a directed graph. The history of any
gossip protocol can be represented by a graph where each member
is one column of vertices. When Alice receives gossip from Bob,
telling her everything he knows, that gossip event is represented
by a vertex in the Alice column, with two edges going downward
to the immediately-preceding gossip events by Alice and Bob.

3. Gossip about gossip: the hashgraph

Hashgraph consensus uses a gossip protocol. This means that a member such
as Alice will choose another member at random, such as Bob, and then Alice will
tell Bob all of the information she knows so far. Alice then repeats with a different
random member. Bob repeatedly does the same, and all other members do the
same. In this way, if a single member becomes aware of new information, it will
spread exponentially fast through the community until every member is aware of
it.

The history of any gossip protocol can be illustrated by a directed graph like
Figure 1. Each vertex in the Alice column represents a gossip event. For example,
the top event in the Alice column represents Bob performing a gossip sync to Alice
in which Bob sent her all of the information that he knew. That vertex has two
downward edges, connecting to the immediately-preceding gossips for Alice and
Bob. Time flows up the graph, so lower vertices represent earlier events in history.
In a typical gossip protocol, a diagram such as this is merely used to discuss the
protocol; there is no actual graph like that stored in memory anywhere.

In hashgraph consensus, that graph is an actual data structure. Figure 2 illus-
trates this data structure. Each event (vertex) is stored in memory as a sequence of
bytes, signed by its creator. For example, one event by Alice (red) records the fact
that Bob performed a gossip sync in which he sent her everything he knew. This
event is created by Alice and signed by her, and contains the hashes of two other
events: her last event and Bob’s last event prior to that gossip sync. The red event
can also contain a payload of any transactions that Alice chooses to create at that
moment, and perhaps a timestamp which is the time and date that Alice claims to
have created it. The other ancestors of that event (gray) are not contained within
it, but are determined by the set of cryptographic hashes. Data structures with
graphs of hashes have been used for other purposes, such as in Git where the ver-
tices are versions of a file tree, and the edges represent changes. But Git stores no



6 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

record of how members communicated. The hashgraph is for a different purpose.
It records the history of how the members communicated.

Gossip protocols are widely used to transfer a variety of types of information.
They can involve gossiping about user identities, or gossiping about transactions, or
gossiping about blockchain blocks, or gossiping about any other information that
needs to be distributed. But what if the protocol were to gossip about gossip?
What if the members were gossiping to transfer the hashgraph itself? When Bob
gossiped to Alice, he would give her all of the events which he knew and she did
not.

Gossiping a hashgraph gives the participants a great deal of information. If a
new transaction is placed in the payload of an event, it will quickly spread to all
members, until every member knows it. Alice will learn of the transaction. And
she will know exactly when Bob learned of the transaction. And she will know
exactly when Carol learned of the fact that Bob had learned of that transaction.
Deep chains of such reasoning become possible when all members have a copy of
the hashgraph. As the hashgraph grows upward, the different members may have
slightly different subsets of the new events near the top, but they will quickly con-
verge to having exactly the same events lower down in the hashgraph. Furthermore,
if Alice and Bob happen to both have a given event, then they are guaranteed to
also both have all its ancestors. And they will agree on all the edges in the subgraph
of those ancestors. All of this allows powerful algorithms to run locally, including
for Byzantine fault tolerance.

This power comes with very little communication overhead. If a community is
simply gossiping signed transactions that they create, there is a certain amount of
bandwidth required. If they instead gossip a hashgraph, and if there are enough
transactions that a typical event contains at least one transaction, then the overhead
is minimal. Instead of Alice signing a transaction she creates, she will sign the
event she creates to contain that transaction. Either way, she is only sending one
signature. And either way, she must send the transaction itself. The only extra
overhead is that she must send the two hashes. But even that can be greatly
compressed. In figure 2, Alice will not send Carol the red event until Carol already
has all its earlier ancestors (either from Alice, or from an earlier sync with someone
else). So Alice does not need to send the two hashes of the two blue parent events.
It is sufficient to tell Carol that this event is the next one by Alice, and that its
other-parent is the third one by Bob. With appropriate compression, this can be
sent in very few bytes, adding only a few percent to the size of the message being
sent.

4. Consensus algorithm

It is not enough to ensure that every member knows every event. It is also
necessary to agree on a linear ordering of the events, and thus of the transactions
recorded inside the events. Most Byzantine fault tolerance protocols without a
leader depend on members sending each other votes. So for n members to agree
on a single YES/NO question might require O(n2) voting messages to be sent over
the network, as every member tells every other member their vote. Some of these
protocols require receipts on votes sent to everyone, making them O(n3). And they
may require multiple rounds of voting, which further increases the number of voting
messages sent.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 7

Alice! Bob! Carol! Dave! Ed!

Figure 2. The hashgraph data structure. Alice creates an event
(red) recording the occurrence of Bob doing a gossip sync to her
and telling her everything he knows. The event contains a hash of
two parent events (blue): the self-parent (dark blue) by the same
creator Alice, and the other-parent (light blue) by Bob. It also
contains a payload of any new transactions that Alice chooses to
create at that moment, and a digital signature by Alice. The other
ancestor events (gray) are not stored in the red event, but they
are determined by all the hashes. The other self-ancestors (dark
gray) are those reachable by sequences of self-parent links, and the
others (light gray) are not.

Hashgraph consensus does not require any votes to be sent. Every member has a
copy of the hashgraph. If Alice and Bob both have the same hashgraph, then they
can calculate a total order on the events according to any deterministic function of
that hashgraph, and they will both get the same answer. Therefore, consensus is
achieved, even without sending vote messages.

Of course, Alice and Bob may not have exactly the same hashgraph at any given
moment. They will typically match in the older events. But for the very recent
events, each may have events that the other has not yet seen. Furthermore, there
may occasionally be a new event released to the community that should be placed
in a lower (earlier) location in the hashgraph. The hashgraph consensus algorithm
deals with these issue using a system that is best thought of as virtual voting.

Suppose Alice has hashgraph A and Bob hash hashgraph B. These hashgraphs
may be slightly different at any given moment, but they will always be consistent.
Consistent means that if A and B both contain event x, then they will both contain
exactly the same set of ancestors for x, and will both contain exactly the same set
of edges between those ancestors. If Alice knows of x and Bob does not, and both of
them are honest and actively participating, then we would expect Bob to learn of x
fairly quickly, through the gossip protocol. The consensus algorithm assumes that
will happen eventually, but does not make any assumptions about how fast it will
happen. The protocol is completely asynchronous, and does not make assumptions
about timeout periods, or the speed of gossip, or the rate at which progress is made.

Alice will calculate a total order on the events in A by calculating a series of
elections. In each election, some of the events in A will be considered to cast a
vote, and some of the events in A will be considered to receive that vote. Alice will



8 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

(a)! (b)! (c)! (d)!

Figure 3. Illustration of strongly seeing. In each hashgraph, the
yellow event at the top can strongly see one of the orange events
on the bottom row. There are n = 5 members, so the least integer
greater than 2n/3 is 4. In (d), one event (orange) is an ancestor
of each of 4 intermediate events by different creators (red), each
of which is an ancestor of the yellow event. Therefore, the yellow
event can strongly see the orange event. Each of the other hash-
graphs is colored to show the same for a different orange event on
the bottom row, which the yellow event see through at least 4 red
events. If all 4 orange events and both parents of the yellow event
have a created round of r, then yellow is created in round r + 1,
because it can strongly see more than 2n/3 witnesses created by
different members in round r. Note that every event is defined to
be both an ancestor and a self-ancestor of itself.

calculate multiple elections, and a given event might participate in some elections
but not others, and might cast different votes in different elections. If the event
was created by Bob, we will talk of Bob voting a certain way in a given election.
But the actual member Bob is not involved. This is purely a calculation that Alice
is performing locally, where she is calculating what vote Bob would have sent her,
if the real Bob were actually sending votes over the internet to her.

This virtual voting has several benefits. In addition to saving bandwidth, it
ensures that members always calculate their votes according to the rules. If Alice
is honest, she will calculate virtual votes for the virtual Bob that are honest. Even
if the real Bob is a cheater, he cannot attack Alice by making the virtual Bob vote
incorrectly.

Bob can try to cheat in a different way. Suppose Bob creates an event x with a
certain self-parent hash pointing to his previous event z. Then Bob creates a new
event y, but gives it a self-parent hash of z, instead of giving it a self-parent hash of
x as he should. This means that the events by Bob in the hashgraph will no longer
be a chain, as they should be. They will now be a tree, because he has created a
fork. If Bob gossips x to Alice and y to Carol, then for a while, Alice and Carol
may not be aware of the fork. And Alice may calculate a virtual vote for x that is
different from Carol’s virtual vote for y.

The hashgraph consensus algorithm prevents this attack by using the concept
of one state seeing another, and the concept of one state strongly seeing another.
These are based on definitions of ancestor and self-ancestor such that every event
is considered to be both an ancestor and self-ancestor of itself.

If Bob creates two events x and y, neither of which is a self-ancestor of the other,
then Bob has cheated by forking. If some event w has x as an ancestor but doesn’t



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 9

have y as an ancestor, then the event w can see event x. However, if both x and y
are ancestors of w, then w is defined to not see either of them, nor any other event
by the same creator. In other words, w can see x if x is known to it, and no forks
by that creator are known to it.

If there are n members, then an event w can strongly see an event x, if w can see
more than 2n/3 events by different members, each of which can see x. This concept
is illustrated in Figure 3. Four copies of the same hashgraph are shown, each with
a different event on the bottom row colored orange. In (d), the yellow event at the
top can see 4 red events by different members, each of which can see the orange
event at the bottom. This is also true in (a), (b), and (c), with (a) actually having
5 red events. But only 4 are needed for strongly seeing, because this example has
n = 5 members, and the least integer greater than 2n/3 is 4.

This concept allows an agreement protocol to achieve Byzantine fault tolerance
without any actual voting, just through local virtual voting.

In virtual voting, when event x votes on some YES/NO question (e.g., whether
some other event is famous), the vote is calculated purely as a function of the
ancestors of x. That vote is only considered to be sent from x to its descendant
event w if w can strongly see x. It is proved in section 5 that if x and y are on
different branches of an illegal fork, then w can strongly see at most one of x and
y, but not both. Furthermore, if hashgraphs A and B are consistent, then it is not
possible for one event to strongly see x in A and another event strongly see y in
B. That lemma is the cornerstone of the Byzantine proof. It ensures that even
if an attacker tries to cheat by forking, they will still be unable to cause different
members to decide on different orders. Historically, some Byzantine agreement
algorithms have required members to send out “receipts” to everyone for each vote
they receive, to defend against Alice sending inconsistent votes to Bob and Carol.
There are some similarities between that attack and a hashgraph forking attack,
and between the use of receipts and the use of strongly seeing.

Given those definitions, the complete hashgraph consensus protocol can be given
by the algorithms in Figures 4, 5, 6, and 7.

The main algorithm in Figure 4 shows that the communication is very simple:
Alice randomly picks another member Bob, and gossips to him all the events that
she knows. Bob then creates a new event to record the fact of that gossip.

That simple gossip protocol is sufficient for Byzantine Fault Tolerance and cor-
rectness. But it can be extended in various ways to improve efficiency.For example,
Alice and Bob might tell each other which events they already know, then Alice
sends Bob all the events that she knows that he doesn’t. The protocol might re-
quire that Alice send those events in topological order, so Bob will always have an
event’s parents before receiving the event. The protocol might even say that after
Alice syncs to Bob, then Bob will immediately sync back to Alice. Multiple syncs
can happen at once, so Alice might be syncing to several members at the same time
several members are syncing to her. These and other optimizations can all be used,
but this simple one is sufficient.

After each sync, the member calls the three procedures to determine the consen-
sus order for as many events as possible. These involve no communication; purely
local computations are sufficient. In these procedures, each for loop visits events
in topological order, where an event is always visited after its parents. In the first
for loop of the algorithm, if x is the first event in all of history, then it won’t have



10 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

parents or previous rounds, so it should be set to x.round=1 and x.witness=TRUE.
The algorithm also uses a constant n, which is the number of members in the entire
population, and c which is a small integer constant greater than 2, such as c = 10.
In the following algorithm, Byzantine agreement is guaranteed with probability one.

It is useful to define a round number for each event as a function of its ancestors.
In divideRounds (Figure 5), every known event is assigned an integer round number
(definition 5.2) as a function of the round numbers of its ancestors. The hashgraphs
in Figure 3 show how this is done. If all the events on the bottom row were round
r, then all the rest of the events in those figures would also be round r, except for
the yellow event, which would be round r + 1. The yellow event is advanced to the
next round, r + 1, because it is able to strongly see more than 2n/3 events from
round r. The first event in history is defined to be round 1, so all future rounds
are determined by this. Every event will eventually have both a round created and
a round received number. The round created is also called the round or round
number.

For any given member, the first event they create in each round is called a
witness. It is only the witness events that send and receive the virtual votes. This
occurs in the decideFame procedure shown in Figure 6. This procedure is where
the Byzantine agreement occurs. For each witness, it decides whether it is famous.
A witness is famous if many of the witnesses in the next round can see it, and it is
not famous if many can’t. The Byzantine agreement protocol runs an election for
each witness, to determine if it is famous. For a witness x in round r, each witness
in round r + 1 will vote that x is famous if it can see it. If more than 2n/3 agree on
whether it is famous, then the community has decided, and the election is over. If
the vote is more balanced, then it continues for as many rounds as necessary, with
each witness in a normal round voting according to the majority of the witnesses
that it can strongly see in the previous round. To defend against attackers who
can control the internet, there are periodic coin rounds where witnesses can vote
pseudorandomly. This means that even if an attacker can control all the messages
going over the internet to keep the votes carefully split, there is still a chance
that the community will randomly cross the 2n/3 threshold. And so agreement is
eventually reached, with probability one.

In Figure 6, the algorithm would continue to work if the line “if d=1” were
changed to “if d=2”. In that revised algorithm, each election would start one round
later. It would even continue to work if the two were combined in the following
hybrid algorithm. In each round, first run all its elections with the “d=1” check.
If the fame of every witness in that round is decided, and 2n/3 or fewer members
created famous witnesses in that round, then the elections for just that round are
all re-run, using a d = 2 check. For this hybrid algorithm, all of the theorems in this
paper would continue to be true, including the proof of Byzantine Fault Tolerance.
For rounds that trigger the new elections, the time to consensus would increase
slightly (by perhaps 20%). But that would happen very rarely in practice, and
when it did, it might increase the number of famous witnesses, to ensure fairness.

Once consensus has been reached on whether each witness in a given round is
famous, it is then easy to use that to determine a consensus timestamp and a
consensus total order on older events. This is done by procedure findOrder, found
in Figure 7.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 11

run two loops in parallel:
loop

sync all known events to a random member
end loop
loop

receive a sync
create a new event
call divideRounds
call decideFame
call findOrder

end loop

Figure 4. The Swirlds hashgraph consensus algorithm. Each
member repeatedly calls other members chosen at random, and
syncs to them. In parallel with the outgoing syncs, each member
receives incoming syncs. When Alice syncs to Bob, she sends all
events that she knows that Bob doesn’t. Bob adds these events
to the hashgraph, accepting only events with valid signatures con-
taining valid hashes of parent events he has. All known events
are then divided into rounds. Then the first events by each mem-
ber in each round (the “witnesses”) are decided as being famous
or not, through purely local Byzantine agreement with virtual vot-
ing. Then the total order is found on those events for which enough
information is available. If two members independently assign a
position in history to an event, they are guaranteed to assign the
same position, and guaranteed to never change it, even as more in-
formation comes in. Furthermore, each event is eventually assigned
such a position, with probability one.

First, the received round is calculated. Event x has a received round of r if that
is the first round in which all the unique famous witnesses were descendants of it,
and the fame of every witness is decided for rounds less than or equal to r. (The
set of unique famous witnesses in a round is defined to be the same as the set of
famous witnesses, except that all famous witness from a given member are removed
if that member had more than one famous witness in that round).

Then, the received time is calculated. Suppose event x has a received round of
r, and Alice created a unique famous witness y in round r. The algorithm finds z,
the earliest self-ancestors of y that had learned of x. Let t be the timestamp that
Alice put inside z when she created z. Then t can be considered the time at which
Alice claims to have first learned of x. The received time for x is the median of all
such timestamps, for all the creators of the unique famous witnesses in round r.

Then the consensus order is calculated. All events are sorted by their received
round. If two events have the same received round, then they are sorted by their
received time. If there are still ties, they are broken by simply sorting by signature,
after the signature is whitened by XORing with the signatures of all the unique
famous witnesses in the received round.



12 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

procedure divideRounds

for each event x

r ← max round of parents of x (or 1 if none exist)
if x can strongly see more than 2n/3 round r witnesses

x.round ← r + 1
else

x.round ← r

x. witness ← (x has no self parent )
or (x.round > x. selfParent .round)

Figure 5. The divideRounds procedure. As soon as an event x
is known, it is assigned a round number x.round, and the boolean
value x.witness is calculated, indicating whether it is a “witness”,
the first event that a member created in that round.

5. Proof of Byzantine fault tolerance

This section provides a number of useful definitions, followed by several proofs,
building up from the Strongly Seeing Lemma (lemma 5.12) to the Byzantine Fault
Tolerance Theorem (theorem 5.19). In the proofs it is assumed that there are
n members (n > 1), more than 2n/3 of which are honest, and less than n/3 of
which are not honest. It is also assumed that the digital signatures and crypto-
graphic hashes are secure, so signatures cannot be forged, signed messages cannot
be changed without detection, and hash collisions can never be found. The syncing
gossip protocol is assumed to ensure that when Alice sends Bob all the events she
knows, Bob accepts only those that have a valid signature and contain valid hashes
corresponding to events that he has. The system is totally asynchronous. It is
assumed that for any honest members Alice and Bob, Alice will eventually try to
sync with Bob, and if Alice repeatedly tries to send Bob a message, she will eventu-
ally succeed. No other assumptions are made about network reliability or network
speed or timeout periods. Specifically, the attacker is allowed to completely control
the network, deleting and delaying messages arbitrarily, subject to the constraint
that a message between honest members that is sent repeatedly must eventually
have a copy of it get through.

Definition 5.1. An event x is defined to be an ancestor of event y if x is y, or a
parent of y, or a parent of a parent of y, and so on. It is also a self-ancestor of y if
x is y, or a self-parent of y, or a self-parent of a self-parent of y and so on.

Definition 5.2. The round created number (or round) of an event x is defined to
be r + i, where r is the maximum round number of the parents of x (or 1 if it has
no parents), and i is defined to be 1 if x can strongly see more than 2n/3 witnesses
in round r (or 0 if it can’t).

Definition 5.3. The round received number (or round received) of an event x is
defined to be the first round where all unique famous witnesses are descendants of
x.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 13

procedure decideFame

for each event x in order from earlier rounds to later
x. famous ← UNDECIDED
for each event y in order from earlier rounds to later

if x. witness and y. witness and y.round>x.round
d ← y.round - x.round
s ← the set of witness events in round

y.round -1 that y can strongly see
v ← majority vote in s (is TRUE for a tie)
t ← number of events in s with a vote of v
if d = 1 // first round of the election

y.vote ← can y see x?
else

if d mod c > 0 // this is a normal round
if t > 2*n/3 // if supermajority, then decide

x. famous ← v
y.vote ← v

break out of the y loop
else // else, just vote

y.vote ← v
else // this is a coin round

if t > 2*n/3 // if supermajority, then vote
y.vote ← v

else // else flip a coin
y.vote ← middle bit of y. signature

Figure 6. The decideFame procedure. For each witness event
(i.e., an event x where x.witness is true), decide whether it is fa-
mous (i.e., assign a boolean to x.famous). This decision is done
by a Byzantine agreement protocol based on virtual voting. Each
member runs it locally, on their own copy of the hashgraph, with
no additional communication. It treats the events in the hashgraph
as if they were sending votes to each other, though the calculation
is purely local to a member’s computer. The member assigns votes
to the witnesses of each round, for several rounds, until more than
2/3 of the population agrees. To find the fame of x, re-run this
repeatedly on the growing hashgraph until x.famous receives a
value.

Definition 5.4. The pair of events (x, y) is a fork if x and y have the same creator,
but neither is a self-ancestor of the other.



14 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

procedure findOrder

for each event x
if there is a round r such that there is no event y

in or before round r that has y. witness =TRUE
and y. famous = UNDECIDED

and x is an ancestor of every round r unique famous
witness

and this is not true of any round earlier than r
then

x. roundReceived ← r
s ← set of each event z such that z is

a self - ancestor of a round r unique famous
witness , and x is an ancestor of z but not
of the self - parent of z

x. consensusTimestamp ← median of the
timestamps of all the events in s

return all events that have roundReceived not UNDECIDED ,
sorted by roundReceived , then ties sorted by
consensusTimestamp , then by whitened signature

Figure 7. The findOrder procedure. Once all the witnesses in
round r have their fame decided, find the set of famous witnesses
in that round, then remove from that set any famous witness that
has the same creator as any other in that set. The remaining
famous witnesses are the unique famous witnesses. They act as
the judges to assign earlier events a round received and consen-
sus timestamp. An event is said to be “received” in the first round
where all the unique famous witnesses have received it, if all earlier
rounds have the fame of all witnesses decided. Its timestamp is the
median of the timestamps of those events where each of those mem-
bers first received it. Once these have been calculated, the events
are sorted by round received. Any ties are subsorted by consensus
timestamp. Any remaining ties are subsorted by whitened signa-
ture. The whitened signature is the signature XORed with the
signatures of all unique famous witnesses in the received round.

Definition 5.5. An honest member tries to sync infinitely often with every other
member, creates a valid event after each sync (with hashes of the latest self-parent
and other-parent), and never creates two events that are forks with each other.

Definition 5.6. An event x can see event y if y is an ancestor of x, and the
ancestors of x do not include a fork by the creator of y.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 15

Definition 5.7. An event x can strongly see event y if x can see y and there is a
set S of events by more than 2/3 of the members such that x can see every event
in S, and every event in S can see y.
Definition 5.8. A witness is the first event created by a member in a round.
Definition 5.9. A famous witness is a witness that has been decided to be famous
by the community, using the algorithms described here. Informally, the community
tends to decide that a witness is famous if many members see it by the start of
the next round. A unique famous witness is a famous witness that does not have
the same creator as any other famous witness created in the same round. In the
absence of forking, each famous witness is also a unique famous witness.
Definition 5.10. Hashgraphs A and B are consistent iff for any event x contained
in both hashgraphs, both contain the same set of ancestors for x, with the same
parent and self-parent edges between those ancestors.
Lemma 5.11. All members have consistent hashgraphs.
Proof: If two members have hashgraphs containing event x, then they have the same
two hashes contained within x. A member will not accept an event during a sync
unless that member already has both parents for that event, so both hashgraphs
must contain both parents for x. The cryptographic hashes are assumed to be
secure, therefore the parents must be the same. By induction, all ancestors of x
must be the same. Therefore the two hashgraphs are consistent. �

The purpose of the concept of strongly seeing is to make the following lemma true.
This lemma is the foundation of the entire proof, because it allows for consistent
voting, and for guarantees that different members will never calculate inconsistent
results, even with purely virtual voting.
Lemma 5.12 (Strongly Seeing Lemma). If the pair of events (x, y) is a fork, and
x is strongly seen by event z in hashgraph A, then y will not be strongly seen by
any event in any hashgraph B that is consistent with A.
Proof: The proof is by contradiction. Suppose event w in B can strongly see y.
By the definition of strongly seeing, there must exist a set SA of events in A that
z can see, and that all can see x. There must be a set SB of events in B that w
can see, and which all see y. Then SA must contain events created by more than
2n/3 members, and so must SB , therefore there must be an overlap of more than
n/3 members who created events in both sets. It is assumed that less than n/3
members are not honest, so there must be at least one honest member who created
events in both SA and SB . Let m be such a member, and their events qA ∈ SA

and qB ∈ SB . Because m is honest, qA and qB cannot be forks with each other,
so one must be the self-ancestor of the other. Without loss of generality, let qA be
the self-ancestor of qB . The hashgraphs A and B are consistent, and qB is in B, so
its ancestor qA must also be in B. Then in B, x is an ancestor of qA, which is an
ancestor of qB , so x is an ancestor of qB . But y is also an ancestor of qB . So both
x and y are ancestors of qB and are forks of each other, so qB cannot see either
of them. But that contradicts the assumption that qB can see y in B. That is a
contradiction, so the lemma is proved. �

At every moment, all members will have consistent hashgraphs. If two hash-
graphs are consistent, and both contain an event x, then they will both contain the



16 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

same set of ancestors for x. This will cause them to agree on every property of x
that is purely a function of its ancestors. That includes its round created, whether
it is a witness, what events it can see, what events it can strongly see, and how
it will vote in each election (if it’s a witness). For most of these properties, this
follows directly from the definition. The following lemma proves that it is also true
for the round created.

Lemma 5.13. If hashgraphs A and B are consistent and both contain event x,
then both will assign the same round created number to x.

Proof: If the consistent hashgraphs both contain x, then they both contain the
same set of all its ancestors, including the first event in history. Then the proof
is by induction: they agree on the round number of that first event, which is 1 by
definition. And if they both contain an arbitrary state y, and agree on the round
numbers of all its ancestors, then they will agree on the maximum round number
r of the parents of y, and will agree on whether y can strongly see more than 2n/3
witnesses created in round r by different members, and therefore will agree on the
round number of y. Therefore they will agree on the round number of all events
they share, including x. �

Different members may have slightly different hashgraphs, and so may have
slightly different elections. However, all the votes will be consistent. If one hash-
graph shows Alice sending Bob a given vote in a given round for a given election,
then any consistent hashgraph must show either the same vote, or no vote at all
from Alice to Bob in that round. It is impossible for two consistent hashgraphs
to show two different votes for Alice in that round. This is shown in the following
lemma.

Lemma 5.14. If hashgraphs A and B are consistent, and the algorithm running
on A shows that a round r event by member m0 sends a vote vA to member m1 in
round r +1, and the algorithm running on B shows that a round r event by member
m0 sends a vote vB to an event by member m1 in round r + 1, then vA = vB.

Proof: The algorithm only sends a vote from event x to event y if y can strongly see
x. It is not possible for consistent hashgraphs to have two events that are forks of
each other and that are both strongly seen, by the Strongly Seeing lemma (lemma
5.12). Therefore, the two votes must be coming from the same event x in both
hashgraphs. An event’s vote is calculated purely as a function of its ancestors, so
the two hashgraphs must agree on the vote, and vA = vB . �

Byzantine agreement on a particular YES/NO question is achieved by multiple
rounds of virtual voting. A given member will end their election calculations in
round r if it is a normal round (not a coin round) and some round r + 1 event
strongly sees more than 2n/3 of the members voting the same way in round r. If
that happens, then every active member will end their election in round r or r + 1
(or r + 2 if r + 1 is a coin round), and will decide the same way. In other words,
the following lemma proves that if anyone decides on a YES/NO question, then
everyone achieves Byzantine consensus almost immediately thereafter.

Lemma 5.15. If hashgraphs A and B are consistent, and A decides a Byzantine
agreement election with result v in round r and B has not decided prior to r, then
B will decide v in round r + 2 or before.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 17

Proof: Decisions can’t happen in coin rounds, so r must be a regular round. If A
decides a vote v, that means some witness in round r received votes of v from a set
of members S that contains more than 2n/3 members. Because voting is consistent
(by the previous lemma), all other round r events in A and B will receive votes
from more than 2n/3 members, a majority of whom will also be in S, because
two subsets of size greater than 2n/3 drawn from a set of size n must each have
a majority of their elements in common with the other. Therefore, every round r
witness in both A and B will vote for v (and some may decide v). If round r + 1 is
a regular round, then every event in A and B in that round will receive unanimous
votes of v and will decide v. If round r + 1 is a coin round, then all will receive
unanimous votes of v, so none will flip coins, and all will vote v, and then all will
decide v in round r + 2. �

The following theorem shows that Byzantine fault tolerance is achieved for any
single YES/NO question.

Theorem 5.16. For any single YES/NO question, consensus is achieved eventu-
ally with probability 1.

Proof: If any member decides the question, then all members will decide the same
way within 2 rounds, by the last lemma. So the only way consensus could fail is if
no member ever decides, because no witness ever receives more than 2n/3 matching
votes. However, in a coin round, if such a supermajority has not yet been achieved,
then all the honest members randomly choose their vote, and will have a nonzero
probability of all choosing the same vote. Coin rounds occur periodically forever,
so eventually the honest members will become unanimous, with probability one,
and then consensus will be reached within 2 rounds. �

In the hashgraph consensus algorithm, Byzantine agreement is used to decide
whether each witness in a given round is famous or not. Every round is guaranteed
to have at least one witness that is famous, by the following lemma.

Lemma 5.17. For any round number r, for any hashgraph that has at least one
event in round r+3, there will be at least one witness in round r that will be decided
to be famous by the consensus algorithm, and this decision will be made by every
witness in round r + 3, or earlier.

Proof: Let Sr+3 be a set containing a single witness in round r + 3, in a hashgraph
that has at least one such witness. For each i < r + 3, let Si be the set of all
witnesses in round i that are each strongly seen by at least one witness in Si+1.
It must be the case that 2n/3 < |Si| ≤ n for all i ≤ r + 2, because the existence
of an event in round i + 1 guarantees more than 2n/3 are strongly seen in round
i, and none of the n members can create more than one witness in a given round
that is strongly seen (by the Strongly Seeing lemma, lemma 5.12). Strongly seeing
implies seeing, so each event in Sr+1 sees more than two thirds of the events in
Sr. Therefore, on average, each event in Sr is seen by more than two thirds of
the events in Sr+1. They can’t all be below average, so there must be at least one
event in Sr (call it x) that is seen by more than two thirds of the events in Sr+1.
So more than two thirds of Sr+1 will vote YES in the election for x being famous.
Therefore, every event in Sr+2 will receive more YES votes than NO votes for the
fame of x, and will therefore vote for x being famous (and may or may not decide
that x is famous). Therefore, the event in Sr+3 will receive unanimous votes for



18 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

x being famous, which will cause it to decide that x is famous. Therefore, every
member with an event in round r + 3 will first decide that x is famous in either
round r + 2 or r + 3. �

Lemma 5.18. If hashgraph A does not contain event x, but does contain all the
parents of x, and hashgraph B is the result of adding x to A, and x is a witness
created in round r, and A has at least one witness in round r whose fame has been
decided (as either famous or as not famous), then x will be decided as “not famous”
in B.

Proof: Let w be a witness in A that decided the fame for one of the witnesses in
round r. None of the ancestors of w can see x, because there is no x in A. So
they will also not see x in B, because they have the same ancestors in consistent
hashgraphs. Therefore the ancestors of w that are witnesses in round r + 1 will all
vote NO on the fame of x in B. So an ancestor of w in r + 2 will decide that x is
not famous in B. �

Given the last 3 lemmas/theorems, we know that every round will eventually
have all its witnesses classified as famous or not famous by universal consensus,
with at least one of the witnesses being famous. After that, the set of famous
witnesses for that round will never change, even if more events are added to the
hashgraph. This set of famous witnesses can therefore act as a judge, to define a
total order on all the events that have reached them, and a consensus timestamp
on every event.

Theorem 5.19 (Byzantine Fault Tolerance Theorem). Each event x created by an
honest member will eventually be assigned a consensus position in the total order
of events, with probability 1.

Proof: All honest members will eventually learn of x, by the definition of honest
and the assumptions that the attackers who control the internet must eventually
allow any two honest members to communicate. Therefore, there will eventually
be a round where all the unique famous witnesses are descendants of x. Therefore
in that round, or possibly earlier, there will be a round r where all the famous
witnesses are descendants of x. Then x is assigned a received round of r, and a
consensus timestamp of the median of when those members first received it, and
its consensus place in history will be fixed. Furthermore, it is not possible to later
discover a new event y that will come before x in the consensus order. Because, to
come earlier in the consensus history, y would have to have a received round less
than or equal to r. That would mean that all the famous witnesses in round r must
have received y. But once the set of famous witnesses is known for a round, all of
their ancestors are also known, so there is no way to discover new ancestors for them
in the future as the hashgraph grows. Furthermore, it isn’t possible for a round
to gain new famous witnesses in the future, once the famousness of all the known
witnesses in that round are known. Any new round r witness that is discovered in
the future will not be an ancestor of the known round r + 1 witnesses (of which
there are more than 2n/3), and so the consensus will immediately be reached that
it is not famous. Therefore, once an event is assigned a place in the total order, it
will never change its position, neither by swapping with another known event, nor
by new events being discovered later and being inserted before it. �



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 19

6. Fairness

Most existing systems for distributed consensus can fail to be “fair” in their
consensus ordering of transactions. To see this, first consider a stock market that
is run by a single server. Alice and Bob each submit a bid to that server, with
Alice submitting it just before Bob. If the server is fair, then it will count Alice’s
transaction as occurring before Bob’s. For some applications, the exact order does
not matter, but for a stock market it can be critically important that this decision
be made fairly.

Now consider a distributed peer-to-peer system, where there is no single server,
but there is a community that will reach consensus on whose transaction was first.
It may still be critically important that the consensus decision is fair. But what
should be the definition of “fair”?

The “fair” decision on transaction order could be defined as favoring whichever
transaction was created first. But that would be bad. Alice might have created
her transaction one second before Bob, while she was in a cabin in the woods,
disconnected from the internet. Then the community would only hear of Bob’s
transaction, and would assume that Bob was first. A year later, when Alice finally
emerges from the woods and rejoins the internet, the community would have to
revise history in order to be “fair”. That would cause a host of problems. So that
wouldn’t be an ideal definition of fairness. There needs to be a requirement that
the transaction actually be sent to the community, in order to count as being first.

The “fair” decision could be defined as reflecting the order in which the trans-
actions reached the current leader. But that would also be bad. The leader might
be a member chosen by the Paxos algorithm. Or it might be whichever member
currently has a turn in a round-robin system. In a proof-of-work system, it would
be whichever miner manages to solve a puzzle first. In any case, the leader could
arbitrarily decide to ignore either Alice’s or Bob’s transaction for a period of time,
delaying one of them, to force their transaction to come after the other. If the goal
is distributed trust, then no single individual can be trusted.

The “fair” decision could be defined as reflecting when each transaction first
reached a certain fraction of the entire community. This is a little better. The
community is then ordering transactions by when the transactions first reached a
virtual server, where “reaching the server” means reaching some fraction of the
community as a whole. However, there are still issues. If the fair choice is defined
as whichever transaction reached at least half of the community first, then there
will be problems if Carol saw Alice first, Dave saw Bob first, and everyone else is
evenly split on the question. This fails if Carol and Dave are both attackers who
turn off their computers permanently before telling the community what they saw.
In that case, the community could never reach a fair consensus, because they would
be waiting forever on Carol and Dave to vote.

A better definition might be to say it is “fair” to consider Alice as being first if a
significant fraction of the community received Alice’s transaction before Bob’s, and
that fraction of the community then went on to communicate with most of the others
quickly. Under this definition, if Alice and Bob are releasing their transactions to
the gossip network at almost the same time, and both spread at about the same
rate, then the consensus could go either way, and still be considered fair. However,
if Alice gossips her transaction before Bob, beating him by just over the duration
of a single gossip sync, then it might be expected that as both transactions spread



20 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

exponentially, doubling the number of members reached on each sync, in the end
over 2/3 of the population will hear of Alice before Bob, and less than 1/3 will favor
Bob. So in that case, it would be fair to favor Alice over Bob in the consensus. The
hashgraph consensus algorithm is fair in this sense. The members who are online
and regularly participating will generate a set of events called famous witnesses, and
the consensus decision will be that the “first” transaction is whichever transaction
reached the majority of that set first. If a small set of members are offline, or
are partitioned so that they cannot communicate with the rest, then they will not
have famous witnesses, and so having a transaction reach them will not count as
having reached the community as a whole. But if the members in that set are
communicating with the rest, then they will count as famous witnesses, and they
will help decide who reached “the community” first.

There are attacks against this system that would be not be considered to be
a failure of the consensus system, because they would be equally effective against
a single-server solution. For example, the Byzantine proofs assume the attackers
control the internet, and can delay arbitrary messages. If attackers actually had
that power, they could simply disconnect Alice from the internet for as long as it
takes for Bob to send a transaction and have it recorded. This could be done on the
real internet by launching a denial of service attack, flooding every computer with
packets from Bob in an attempt to prevent Alice from communicating. Of course,
this would also be effective if Alice were communicating with a central server, so it
could be considered more a failure of the internet than a failure of the consensus
system.

Similarly, Bob could gain an advantage over Alice by buying more bandwidth, so
that his gossips reach more people, faster. If he has 8 times the bandwidth of Alice,
so that he can send his transaction initially to 8 members in the time Alice sends
to 1, then he can gain an advantage of the time of about 3 gossip syncs. This is not
considered a failure. If his message actually reaches the world before hers, then he
should have the credit for it. This is similar to the current stock markets, where
companies spend large sums of money for slightly faster connections, in order to
reach the central server faster. So the consensus algorithm would not be considered
“unfair” in this case, because it is behaving the same as a central server.

7. Generalizations and enhancements

7.1. proof-of-stake. So far, it has been assumed that every member is equal. The
above algorithms refer to things depending on “more than 2n/3 of the members”
and “at least half of the famous witness events”. They also use the idea of a
“median” of a set of numbers. The proof shows Byzantine convergence when more
than 2n/3 of the members are honest.

It is easy to modify the algorithm to allow members to be unequal. Each member
can be assumed to have some positive integer associated with them, known as their
“stake”. Then, the votes would be replaced with weighted voting, and the medians
with weighted medians, where votes are weighted proportional to the voter’s stake.
In all of the above definitions, algorithms, and proofs, define “more than 2n/3
members” to mean “a set of members whose total stake is more than 2n/3, where
n is the total stake of all members”. The “median of the timestamps of events in
S” would become “the weighted median of the timestamps in S, weighted by the
stake of the creator of each event in S”. The weighted median can be thought of as



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 21

taking each event y in S, and putting multiple copies of the timestamp of y into
a bag, where the number of copies equals the stake of the member who created y.
Then take the median of the timestamps in the bag.

The Byzantine proof applied as long as the attackers constituted less than 1/3
of the population. With these new definitions, it will now apply when the attackers
together have a stake that is less than 1/3 of the total stake of all members.

This new proof-of-stake system is more general than the unweighted system.
It can still be used to implement the unweighted system, by simply giving every
member a stake of 1. But it can also be used to provide better behavior. For
example, the stake might be proportional to the degree to which a member is
trusted. Perhaps members who have been investigated in some way should be
trusted more than others. Or it could be used to give greater weight to members who
have a greater interest in the system as a whole working properly. A cryptocurrency
might use each member’s number of coins as their stake, on the grounds that those
with more coins have a greater interest in ensuring the system runs smoothly. Or
a community could be started by a group of members with mutual trust, each of
which is given an equal stake. Then, each existing member could be allowed to invite
arbitrarily many new members to join, subject to the constraint that the inviter
must split their stake with the invitee. This would discourage a Sybil attack, where
one member invites a huge number of sock puppet accounts, in order to control the
voting.

The “stake record” is the list of members and the amount of stake owned by each
member. So far, it has been assumed that the stake record is universally known,
and is unchanging. It is easy to relax that assumption.

Assume that there is a particular form of transaction that changes the stake
record. The community might set up rules at the beginning, governing which such
transactions are valid. For example, each member could be allowed to invite other
members, up to a total of at most 10 new members. Or perhaps anyone inviting
a new member must simultaneously give the new member a portion of their own
stake. The validity of such a transaction might depend on the exact order of the
transactions in the consensus order. For example, if the rule is that only one new
member can be invited, and Alice invites Carol at the same time Bob invites Dave,
then then whichever invitation comes first in the consensus order will succeed, and
the other will fail.

All of this can be accommodated. When the consensus algorithm finishes de-
ciding the question of which round r firsts are famous, at that moment it becomes
possible to find exactly which events will have a received round of r, and to calculate
their exact position in the consensus order. At that time, each of the transactions
in those events can be processed, and the rules can be consulted to see which are
valid, and the valid transactions can be applied. This may change the stake record.

If the stake record does change, then the algorithm should be re-run for all
events in round r and later. This may change the calculations of which events are
strongly seen, of event round numbers, of which events are witnesses, and of which
are famous witnesses.

Note that when deciding which round r witnesses are famous, the calculations
are done using the old stake record. The voting for round r may continue several
rounds into the future, all using the old stake record. Once round r is settled, the



22 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

future rounds will reshuffle, and the calculations for round r + 1 famous witnesses
will be done using the new stake record.

This approach allows all members to be in agreement on exactly what stake
record is being used for any given calculation. That ensures that they will always
agree on the results of those calculations. And Byzantine agreement will still be
guaranteed with probability one.

7.2. signed state. Another enhancement to the system is to have signed states.
Once consensus has been reached on whether each witness in round r is famous
or not, a total order can be calculated for every event in history with a received
round of r or less. It is also guaranteed that all other events (including any that
are still unknown) will have a received round greater than r. In other words,
at this point, history is frozen and immutable for all events up to round r. A
member can therefore take all the transactions from those events, and feed them
into a database in the consensus order, and calculate the state that is reached after
processing those transactions. Every member will calculate the same consensus
order, so every member will calculate the same state. This is a consensus state.
Each member can take the hash of this state and digitally sign it, and put the
signature into a new transaction. Soon after, every member will have received by
gossip many signatures for the consensus state. Once signatures are collected from
at least 1/3 of the population, that consensus state, along with the set of signatures,
constitutes a signed state that is an official consensus state for the system at the
start of round r. It can be given to people outside the community, and they can
check the signatures, and therefore trust the state. At this point, a member can
feel free to delete all the transactions that were used to create the state, and delete
all the events that contained those transactions. Only the state itself needs to be
kept. It might be possible to do this every few minutes, so there will never be a
huge number of transactions and events stored. Only the consensus state itself. Of
course, a member is free to preserve the old events, transactions, and states, perhaps
for archive or audit purposes. But the system is still immutable and secure, even
if everyone discards that old information.

Given the assumption that less than 1/3 of the population is dishonest, the signed
state is guaranteed to have at least one honest signature, and so can be trusted to
represent the community consensus, as found by the consensus algorithm. If the
set of members (or their stake) can change over time, then that stake record (and
its history) will also be part of the state. The threshold of 1/3 could be replaced
with something else, such as more than 2/3, and the system would still work.

7.3. Efficient gossip. The gossip protocol makes very efficient use of bandwidth.
Suppose there are enough transactions being created that every event contains
at least one transaction. In any replicated state machine, using a point-to-point
network such as the internet, it will be necessary for each member to receive each
signed transaction once, and to also send each signed transaction on average once.
For the hashgraph gossip, the same is true, except that the signature is for the
event containing the transaction, rather than for the transaction itself. The only
additional overhead is the two hashes and the timestamp, plus the array of counts
at the start of the sync. However, the hashes themselves don’t have to be sent over
the internet. It is sufficient to merely send the identity of the creator of the event,
and the sequence number of its other-parent.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 23

For example, suppose the 100th event created by Alice has an other-parent that
is Ed’s 50th event. If this event by Alice is sent from Bob to Carol during a sync,
Bob could skip sending Carol the two hashes in the event. Instead, he could tell
Carol that this is an event by Alice, and that the other-parent is Ed’s 50th event.
Since Bob is only sending Carol events she doesn’t have according to their initial
counts, Carol will know that this must be Alice’s 100th event, since the last one
she knows about by Alice is Alice’s 99th event. So Bob doesn’t have to send the
hash of that self-parent, and doesn’t have to send the sequence number 100. He
just has to send the fact that it is by Alice. Similarly, he must send that the other-
parent is by Ed, and that it is Ed’s 50th event. So instead of two, large hashes,
Bob is simply sending the triplet (Alice, Ed, 50). With some care, the identities
and sequence numbers can be compressed to a byte or two each, so the triplet will
required only 3 to 6 bytes. This is small overhead compared to the signature (which
is 64 bytes for a 512-bit signature) and the transactions within the event (perhaps
averaging 100 bytes or more). So if each event contains at least one transaction,
then there is almost no overhead for gossiping a hashgraph, beyond simply gossiping
the transactions themselves.

And because voting is virtual, there is no other bandwidth cost at all in order to
achieve consensus. In this sense, the bandwidth required for hashgraph consensus is
very close to the theoretical limit, which would be the bandwidth needed to simply
send the signed and dated transactions themselves.

A system that merely sent the transactions could save bandwidth by not at-
taching timestamps to the transactions, if the application didn’t need timestamps.
Hashgraph consensus can do the same. In that case, the “timestamp” within an
event would simply be an integer that is its self-parent’s “timestamp” plus one.
When Bob sends an event to Carol, that sequence number can be calculated by
Carol, so there is no need for Bob to actually send it over the internet.

A system that only sent transactions could also save bandwidth by grouping
together several transactions by the same creator, and attaching only a single sig-
nature to the list, rather than one per transaction. Hashgraph can do the same,
by putting several transactions into a single event, and so having only a single
signature for the list.

So the bandwidth requirements of hashgraph consensus are very close to the
theoretical minimum in all cases.

7.4. Fast elections. That second part of the algorithm is a Byzantine agreement
step for deciding fame. It has an interesting property. When a group of members are
all online and all participating regularly, the Byzantine agreement will be applied
to a set of elections where almost all the voters start with identical votes. That is
because a round r + 1 witness will strongly see many of the round r witnesses, so a
round might be expected to last about two “gossip periods”, where a gossip period
is the time it takes for a message to propagate through the entire community. This
should be the time to do log2(n) syncs, when there are n members online. For a
round r + 1 witness x to vote YES on the fame of a round r witness y, it isn’t
necessary for x to strongly see y. It can merely see y. It would be expected that
y would propagate to all the online members in a single gossip period. So there
is an overwhelmingly high probability it will propagate to them within two gossip
periods. So in practice, when everyone is online and participating, the fame of



24 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

witnesses is almost always decided immediately, without the need for many rounds
of voting.

Similarly, if y is a round r witness, but was created by a member who was asleep
and then awoke just before the end of round r , then it is likely that almost all
round r+1 witnesses will vote NO on y, and the election will again end immediately.
There is a small window of time, on the order of the duration of a single sync, in
which a member awakening and creating y can cause the round r + 1 witnesses
to start with a close to even vote split. If the online members are all choosing
each other randomly and syncing frequently, then such a result will converge to a
decision in about 3 rounds, with a probability of only a few percent for more than 3
rounds, and of less than a tenth of a percent for more than 6 rounds. If an attacker
completely controls the internet, they can cause this to drag on for exponentially
many rounds. This can be reduced to a constant expected number of rounds by
using a cryptographic “shared coin” protocol, rather than the “middle bit of the
signature” described in the above algorithm. The middle bit is intended to be like
each member having an independent random coin flip that the attacker couldn’t
predict ahead of time. A shared coin protocol is the same, but ensures all members
end up with the same “random” result. This addition would reduce the theoretical
worst-case expected time. But such an addition seems unlikely to be worth the
effort in practice. If an attacker can truly control the internet enough to keep the
honest members from synching randomly with each other for a long period, then
the attacker likely has the power to simply block the honest users from accessing
the internet at all. So a shared coin seems to be of only theoretical interest here.
But using a shared coin is always an option.

7.5. Efficient calculations. The first part step of the algorithm is to assign a
round of either r or r + 1 to an event, based on whether it can strongly see enough
round r events. So it is necessary to calculate whether a round r witness event x
can be strongly seen by an arbitrary event y. The following is one way to calculate
that answer.

Give each event a sequence number that is one greater than the sequence number
of its self-parent. Store an array for y and an array for x. The y array remembers
the sequence number of the last event by each member that is an ancestor of y. The
array for x remembers the sequence number of the earliest event by each member
that is a descendant of x. Compare the two arrays, and find how many elements in
the y array are greater than or equal to the corresponding element of the x array. If
there are more than 2n/3 such matches, then y strongly sees x. The comparison of
the x and y arrays can be sped up by multithreading (to use more cores), packing
multiple elements into one integer (to use the ALU more efficiently), using assembly
language (to access the CPU vector instructions) or using the GPU (for more vector
parallelism).

8. Conclusions

A new system has been presented, based on the Swirlds hashgraph data struc-
ture, and the Swirlds hashgraph consensus algorithm. It is fair, fast, Byzantine
fault tolerant, and extremely bandwidth efficient due to virtual voting. The algo-
rithm is given in pseudocode in the figures, using an imperative language, but it
is also very natural to describe it in a functional form. The appendix gives the
algorithm in a functional form, which is concise, and may be of interest.



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 25

References
[1] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages
173–186, Berkeley, CA, USA, 1999. USENIX Association.

[2] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[3] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[4] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

[5] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, Philadel-
phia, PA, June 2014. USENIX Association.

[6] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. Cryptology ePrint Archive, Report 2016/199, 2016. http://eprint.iacr.org/.

[7] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Making
byzantine fault tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, NSDI’09, pages 153–168,
Berkeley, CA, USA, 2009. USENIX Association.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. posted to the internet
November, 2008, 2008. http://bitcoin.org/bitcoin.pdf.

[9] Giulio Prisco. Intel develops ‘Sawtooth Lake’ distributed ledger technology for the Hyper-
ledger project. Bitcoin Magazine, April 2016.

[10] Dag-Erling Smorgrav. FreeBSD quarterly status report. Posted on FreeBSD.org, 2013. http:
//www.freebsd.org/news/status/report-2013-09-devsummit.html#Security.

[11] Miguel Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and Paulo Veris-
simo. Byzantine consensus in asynchronous message-passing systems: a survey. International
Journal of Critical Computer-Based Systems, 2(2):141–161, 2011.



26 THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01

9. Appendix A: Consensus algorithm in functional form

An event is a tuple e = {p, h, t, i, s} where:

p = payload(e) = the “payload” data, such as a list of transactions
h = hashes(e) = a list of hashes of the event’s parents, self-parent first
t = time(e) = creator’s claimed date and time of the event’s creation
i = creator(e) = creator’s ID number
s = sig(e) = creator’s digital signature of {p, h, t, i}

parents(x) = set of events that are parents of event x
selfParent(x) = the self-parent of event x, or ∅ if none

n = the number of members in the population
c = frequency of coin rounds (such as c = 10)
d = rounds delayed before start of election (such as d = 1)
E = the set of all events in the hashgraph

E0 = E ∪ {∅}
T = set of all possible (time, date) pairs
B = {true, false}
N = {1, 2, 3, ...}

parents : E → 2E

selfParent : E → E0
ancestor : E × E → B

selfAncestor : E × E → B
manyCreators : 2E → B

see : E × E → B
stronglySee : E × E → B

parentRound : E → N
roundInc : E → B

round : E → N
witness : E → B

diff : E × E → I
votes : E × E × B → N

fractTrue : E × E → R
decide : E × E → B

copyVote : E × E → B
vote : E × E → B

famous : E → B
uniqueFamous : E → B
roundsDecided : N → B
roundReceived : E → N

timeReceived : E → T



THE SWIRLDS HASHGRAPH CONSENSUS ALGORITHM - SWIRLDS-TR-2016-01 27

ancestor(x, y) = x = y ∨ ∃z ∈parents(x), ancestor(z, y)

selfAncestor(x, y) = x = y ∨ (selfParent(x) �= ∅ ∧ selfAncestor(selfParent(x), y))

manyCreators(S) = |S| > 2n/3 ∧ ∀x, y ∈ S, (x �= y =⇒ creator(x) �= creator(y))

see(x, y) = ancestor(x, y) ∧ ¬(∃a, b ∈ E, creator(y) = creator(a) = creator(b)∧
ancestor(x, a) ∧ ancestor(x, b) ∧ ¬ selfAncestor(a, b) ∧ ¬ selfAncestor(b, a))

stronglySee(x, y) = see(x, y) ∧ (∃S ⊆ E, manyCreators(S)
∧(z ∈ S =⇒ (see(x, z) ∧ see(z, y))))

parentRound(x) = max({1} ∪ {round(y) | y ∈parents(x)})

roundInc(x) = ∃S ⊆ E, manyCreators(S)
∧(∀y ∈ S, round(y) = parentRound(x) ∧ stronglySee(x, y))

round(x) = parentRound(x) +
{

1 if roundInc(x)
0 otherwise

witness(x) = (selfParent(x) = ∅) ∨ (round(x) > round(selfParent(x))

diff(x, y) = round(x) − round(y)

votes(x, y, v) = |{z ∈ E | diff(x, z) = 1 ∧ witness(z)∧ stronglySee(x, z) ∧ vote(z, y) = v}|

fractTrue(x, y) = votes(x,y,true)
(votes(x,y,true)+votes(x,y,false))

decide(x, y) = (selfParent(x) �= ∅ ∧ decide(selfParent(x), y)) ∨(witness(x) ∧ witness(y)
∧ diff(x, y) > d ∧ (diff(x, y) mod c > 0) ∧ (∃v ∈ B, votes(x, y, v) > 2n

3 )))

copyVote(x, y) = (¬ witness(x)) ∨ (selfParent(x) �= ∅ ∧ decide(selfParent(x), y)

vote(x, y) =




vote(selfParent(x), y) if copyVote(x)
see(x, y) if ¬ copyVote(x) ∧ diff(x, y) = d

1 = middleBit(signature(x)) if ¬ copyVote(x) ∧ diff(x, y) �= d

∧ (diff(x, y) mod c = 0)
∧ ( 1

3 ≤ fractTrue(x, y) ≤ 2
3 )

fractTrue(x, y) ≥ 1
2 otherwise

famous(x) = ∃y ∈ E, decide(y, x) ∧ vote(y, x)

uniqueFamous(x) = famous(x) ∧ ¬∃y ∈ E, y �= x ∧ famous(y)
∧ round(x) = round(y) ∧ creator(x) = creator(y)

roundsDecided(r) = ∀x ∈ E, ((round(x) ≤ r ∧ witness(x)) =⇒ ∃y ∈ E, decide(y, x))

roundReceived(x) = min({r ∈ N | roundsDecided(r) ∧ (∀y ∈ E,
(round(y) = r ∧ uniqueFamous(y)) =⇒ ancestor(y, x)

timeReceived(x) = median({time(y) | y ∈ E ∧ ancestor(y, x)∧
(∃z ∈ E, round(z) = roundReceived(x) ∧ uniqueFamous(z)
∧ selfAncestor(z, y}) ∧ ¬(∃w ∈ E, selfAncestor(y, w) ∧ ancestor(w, x))})


