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Abstract. This report presents LibraBFT, a robust and efficient state machine replication system
designed for the Libra Blockchain. LibraBFT is based on HotStuff, a recent protocol that leverages
several decades of scientific advances in Byzantine fault tolerance (BFT) and achieves the strong
scalability and security properties required by internet settings. LibraBFT further refines the HotStuff
protocol to introduce explicit liveness mechanisms and provides a concrete latency analysis. To
drive the integration with the Libra Blockchain, this document provides specifications extracted
from a fully-functional simulator. These specifications include state replication interfaces and a
communication framework for data transfer and state synchronization among participants. Finally,
this report provides a formal safety proof that induces criteria to detect misbehavior of BFT nodes,
coupled with a simple reward and punishment mechanism.

1. Introduction

The advent of the internet and mobile broadband has connected billions of people globally, providing
access to knowledge, free communications, and a wide range of lower-cost, more convenient services.
This connectivity has also enabled more people to access the financial ecosystem. Yet, despite this
progress, access to financial services is still limited for those who need it most.

Blockchains and cryptocurrencies have shown that the latest advances in computer science, cryptog-
raphy, and economics have the potential to create innovation in financial infrastructure, but existing
systems have not yet reached mainstream adoption. As the next step toward this goal, we have de-
signed the Libra Blockchain [1], [2] with the mission to enable a simple global currency and financial
infrastructure that empowers billions of people.

At the heart of this new blockchain is a consensus protocol called LibraBFT — the focus of this report
— by which blockchain transactions are ordered and finalized. LibraBFT decentralizes trust among
a set of validators that participate in the consensus protocol. LibraBFT guarantees consensus on the
history of transactions among honest validators and remains safe even if a threshold of participants
are Byzantine (i.e., faulty or corrupt [3]). By embracing the classical approach to Byzantine fault
tolerance, LibraBFT builds on solid and rigorously proven foundations in distributed computing.

Initially, the participating validators will be permitted into the consensus network by an association
consisting of a geographically distributed and diverse set of Founding Members, which are organiza-
tions chosen according to objective membership criteria with a vested interest in bootstrapping the
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Libra ecosystem [2]. Over time, membership eligibility will shift to become open and based only on
an organization’s holdings of Libra [4].

The scientific community has made steady progress in scaling consensus technology for internet set-
tings and making it robust against strongly adversarial attacks. The LibraBFT consensus leverages
a cutting-edge technique called HotStuff [5] that bridges between the world of BFT consensus and
blockchain. This choice reflects vast expert knowledge and exploration of various alternatives and
provides LibraBFT with the following key properties that are crucial for decentralizing trust:

• Safety: LibraBFT maintains consistency among honest validators, even if up to one-third of
the validators are corrupt.

• Asynchrony: Consistency is guaranteed even in cases of network asynchrony (i.e., during pe-
riods of unbounded communication delays or network disruptions). This reflects our belief that
building internet-scale consensus protocol whose safety relies on synchrony would be inherently
both complex and vulnerable to Denial-of-Service (DoS) attacks on the network.

• Finality: LibraBFT supports a notion of finality, whereby a transaction becomes irreversibly
committed. It provides concise commitments that authenticate the result of ledger queries to
an end user.

• Linearity and Responsiveness: LibraBFT has two desirable properties that BFT consensus
protocols preceding HotStuff were not able to simultaneously support — linearity and respon-
siveness. These protocols inherently depend on leaders to drive progress. Informally, linearity
guarantees that once a leader is successfully elected, the protocol requires only linear commu-
nication to commit transactions (this is optimal); responsiveness means that the leader has no
built-in delay steps and advances as soon as it collects responses from validators.

• Simplicity and Modularity: The core logic of LibraBFT allows simple and robust imple-
mentation, paralleling that of public blockchains based on Nakamoto consensus [6]. Notably,
the protocol is organized around a single communication phase and allows a concise safety
argument.

• Sustainability: Current public blockchains, where trust is based on computational power,
have been reported to consume vast amounts of energy [7] and may be subject to central-
ization [8]. LibraBFT is designed as a proof-of-stake system, where participation privileges
are granted to known members based on their financial involvement. LibraBFT can support
economic incentives to reward good behaviors and/or punish wrongdoings from stakeholders.
Computational costs in LibraBFT consist primarily of cryptographic signatures, a standard
concept with efficient implementations.

Key technical approach. Standing on the classical foundations of the field, LibraBFT is a consensus
protocol that progresses in rounds, where in each round a leader is chosen amongst the validators.
The leader proposes a new block consisting of transactions and sends it to the rest of the validators,
who approve the new block if it consits of valid transactions. Once the leader collects a majority of
votes, she sends it to the rest of the validators. If a leader fails to propose a valid block or does not
aggregate enough votes, a timeout mechanism will force a new round and a new leader will be chosen
from the validators. This way, new blocks extend the blockchain. Eventually, a block will meet the
commit rule of LibraBFT, and once this happens, this block and any prior block is committed.

Related work. A comprehensive survey is beyond the scope of this manuscript (see for example [9]–
[11]). Here we mention key concepts and mechanisms that influenced our work.
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Consensus algorithms in classical setting. The Byzantine consensus problem was pioneered
by Lamport et al. [3], who also coined the term Byzantine to model arbitrary, possibly maliciously
corrupt behavior. The safety of the solution introduced by Lamport et al. relied on synchrony, a
dependency that practical systems wish to avoid both due to complexity and because it exposes the
system to DoS attacks on safety.

In lieu of synchrony assumptions, randomized algorithms, pioneered by Ben-Or [12], guarantee
progress with high probability. A line of research gradually improved the scalability of such algo-
rithms, including [13]–[16]. However, most practical systems did not yet incorporate randomization.
In the future, LibraBFT may incorporate certain randomization to thwart adaptive attacks.

A different approach for asynchronous settings, introduced by Dwork et al. [17], separated safety (at
all times) from liveness (during periods of synchrony). Dwork et al. introduced a round-by-round
paradigm where each round is driven by a designated leader. Progress is guaranteed during periods
of synchrony as soon as an honest leader emerges, and until then, rounds are retired by timeouts.
Dwork et al.’s approach (DLS for short) underlies most practical BFT works to date, with steady
improvements to its performance. Specifically, it underlies the first practical solution introduced by
Castro and Liskov [18] called PBFT. In PBFT, an honest leader reaches a decision in two all-to-
all communication rounds. In addition to the original open-source implementation of PBFT, the
protocol has been integrated into BFT-SMaRt [19] and, recently, into FaB [20]. Zyzzyva [21] adds an
optimistically fast track to PBFT that can reach a decision in one round when there are no failures.
An open-source implementation of Zyzzyva was built in Upright [22]. Response aggregation using
threshold cryptography was utilized in consensus protocols by Cachin [23] and Reiter [24] to replace
all-to-all communication with an all-to-collector and collector-to-all pattern that incurs only linear
communication costs. Threshold signature aggregation has been incorporated into several PBFT-
based systems, including Byzcoin [25] and SBFT [26].

Two blockchain systems, Tendermint [27] and Casper [28], presented a new variant of PBFT that
simplifies the leader-replacement protocol of PBFT such that it has only linear communication cost
(linearity). These variants forego a hallmark property of practical solutions called responsiveness.
Informally, (optimistic) responsiveness holds when leaders can propose new blocks as soon as they
receive a fixed number of messages, as opposed to waiting for a fixed delay. Thus, Tendermint and
Casper introduced into the field a trade-off in practical BFT solutions — either they have linearity
or responsiveness, but not both. The HotStuff solution resolved this trade-off and presented the first
BFT consensus protocol that has both.

LibraBFT leverages HotStuff and possesses many of the benefits achieved in four decades of works
presented above. Specifically, LibraBFT adopts the DLS and PBFT round-based approach, incorpo-
rates message collection and fast signature aggregation [29], and has both linearity and responsiveness.
(Other blockchain platforms that appeared recently also adopt HotStuff, notably ThunderCore with
a variant named PaLa [30]). Compared with threshold signature, signature aggregation in LibraBFT
does not require distributed setup and enables economic incentives for voters at the price of one
additional bit per node per signature.

Consensus in a permissionless setting. All the works mentioned above assume a permissioned
setting, i.e., the participating players are known in advance.

Differently, in a permissionless setting, any party can join and participate in the protocol — which
is what Nakamoto Consensus (NC) [6] aims to solve — resulting in an entirely different protocol
structure. In NC, transactions (gathered in blocks) are chained and simply disseminated to the
network with a proof of work. The reward mechanism for extending the current chain suffices to
incentivize miners to accept the current chain de facto and rapidly converge on a single, longest fork.
Casper and HotStuff exhibit similar simplicity of protocol structure. They embed the protocol rounds
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into a (possibly branching) chain and deduce commit decisions by simple offline analysis of the chains.
We found that this protocol structure leads to concise and robust implementation and leads to safety
arguments that are easy to formulate and verify.

Comparison to LibraBFT. In LibraBFT, chains of (certified) blocks form a tree, a limited form
of a direct acyclic graph (DAG). Several blockchains are similarly based on graphs of blocks but
allow greater concurrency in posting blocks into the graph, e.g., GHOST, Conflux, Blockmania [31]
and Hashgraph [32]. Our experience with some of these paradigms indicates that recovering graph
information and verifying it after a participant loses connection temporarily can be challenging. In
LibraBFT, only leaders can extend chains; hence, disseminating, recovering, and verifying graph
information is simple and essentially linear.

Compared with HotStuff itself, LibraBFT makes a number of enhancements. LibraBFT provides a
detailed specification and implementation of the pacemaker mechanism by which participants synchro-
nize rounds. This is coupled with a liveness analysis that consists of concrete bounds to transaction
commitment. LibraBFT includes a reconfiguration mechanism of the validator voting rights (epochs).
It also describes mechanisms to reward proposers and voters. The specification allows deriving safe
and complete criteria to detect validators that attempt to break safety, enabling punishment to be
incorporated into the protocol in the future. We also elaborate on the protocol for data dissemination
among validators to synchronize their state.

Content. The remainder of this report is structured as follows: we start by introducing important con-
cepts and definitions (Section 2) and how LibraBFT is used in the Libra Blockchain (Section 3). We
then describe the core data types of LibraBFT and its network communication layer (Section 4). Next,
we present the protocol itself (Section 5) with sufficient details to prepare the proof of safety (Sec-
tion 6). We then proceed to describe the pacemaker module (Section 7) and prove liveness (Section 8).
Finally, we discuss the economic incentives of LibraBFT (Section 9) and conclude in Section 10.

In this initial report, we have chosen to use a minimal subset of Rust as a specification language
for the protocol, whenever code was needed. We provide code fragments directly extracted from our
reference implementation in a discrete-event simulated environment. We intend to share the code for
this simulator and provide experimental results in a subsequent version of the report.

2. Overview and Definitions

We start by describing the desired properties of LibraBFT and how our state machine replication
protocol is meant to be integrated into the Libra Blockchain.

2.1. State Machine Replication

State Machine Replication (SMR) protocols [33] are meant to provide an abstract state machine
distributed over the network and replicated between many processes, also called nodes.

Specifically, a SMR protocol is started with some initial execution state. Every process can submit
commands and observe a sequence of commits. Each commit contains the execution state that is the
result of executing a particular command on top of the previous commit. Commands may be rejected
during execution: in this case, they are called invalid commands.

Assuming that the execution of commands is perfectly deterministic, we wish to guarantee the fol-
lowing high-level properties:

(safety) All honest nodes observe the same sequence of commits.
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(liveness) New commits are produced as long as valid commands are submitted.

Note that nodes should observe commits in the same order but not necessarily at the same time. The
notion of an honest node is made precise below in Section 2.3.

2.2. Epochs

For practical applications, the set of nodes participating in the protocol can evolve over time. In
LibraBFT, this is addressed by supporting a notion of epoch:

• Each epoch begins using the last execution state of the previous epoch — or using system-wide
initial parameters for the first epoch.

• We assume that every execution state contains a value epoch_id that identifies the current
epoch.

• When a command that increments epoch_id is committed, the current epoch stops after this
commit, and the next epoch is started.

2.3. Byzantine Fault Tolerance

Historically, fault-tolerant protocols were meant to address common failures, such as crashes. In the
context of a blockchain, the SMR consensus protocol is used to limit the power of individual nodes
in the system. To do so, we must guarantee safety and liveness even when certain nodes deviate
arbitrarily from the protocol.

In the rest of this report, we assume a fixed, unknown subset of malicious nodes for every epoch,
called Byzantine nodes [3]. All the other nodes, called honest nodes, are assumed to follow protocol
specifications scrupulously. During a given epoch, we assume that every SMR node 𝛼 has a fixed
voting power, denoted 𝑉 (𝛼) ≥ 0. We write 𝑁 for the total voting power of all nodes and assume a
security threshold 𝑓 as a function of 𝑁 such that 𝑁 > 3𝑓 . For example, we may define 𝑓 = ⌊ 𝑁−1

3 ⌋.
For notational simplicity in this report, we refer to a voting power of 𝑥 as consisting of 𝑥 nodes.

We analyze all consensus properties in the context of the following BFT assumption:

(bft-assumption) The combined voting power of Byzantine nodes during any epoch
must not exceed the security threshold 𝑓 .

A subset of nodes whose combined voting power 𝑀 satisfies 𝑀 ≥ 𝑁 − 𝑓 is called a quorum. The
notion of quorum is justified by the following classic lemma [34]:

Lemma B1: Under BFT assumption, for every two quorums of nodes in the same epoch, there
exists an honest node that belongs to both quorums.

We recall the proof of Lemma B1 in Section 6.1.

2.4. Cryptographic Assumptions

We assume a hash function and a digital signature scheme that are secure against computationally-
bounded adversaries and require that every honest node keeps its private signature key(s) secret.

Since our protocol only hashes and signs public values, we may assume all digital signatures to be
unforgeable in a strong non-probabilistic sense, meaning that any valid signature must originate from
the owner of the private key. Similarly, we may assume that collisions in the hash function hash will
never happen, therefore hash(𝑚1) = hash(𝑚2) implies 𝑚1 = 𝑚2.
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2.5. Networking Assumptions and Honest Crashes

While the safety of LibraBFT is guaranteed under the BFT assumption alone, liveness requires
additional assumptions on the network and the processes. Specifically, we will assume that the
network alternates between periods of bad and good connectivity, known as periods of asynchrony and
synchrony, respectively. Liveness can only be guaranteed during long-enough periods of synchrony.

During periods of asynchrony, we allow messages to be lost or to take an arbitrarily long time. We
also allow honest nodes to crash and restart. During periods of synchrony, we assume that there
exists an upper bound 𝛿𝑀 to the transmission delay taken by any message between honest nodes;
besides, honest processes must be responsive and cannot crash.

We must stress that the adversary controls malicious nodes and the scheduling of networking messages
even during periods of synchrony, subject to the maximal delay 𝛿𝑀 .

The parameters of this model — such as the value of 𝛿𝑀 or whether the network is currently syn-
chronous or not — are not available to the participants within the system. To simplify the analysis,
it is usual in the literature to consider only two periods: before some unknown global stabilization
time, called GST, and after GST. Our proof of liveness (Section 8) will give concrete upper bounds
on the time needed by the system to produce a commit after GST.

More formally, the assumptions on network and crashes are written as follows:

(eventually-synchronous-network) After GST, the network delivers all messages be-
tween honest nodes under some (unknown) time delay 𝛿𝑀 > 0.

(eventually-no-crash) After GST, honest nodes are perfectly responsive and never
crash.

We remark that the GST model does not take into account CPU time associated with message
processing. Besides, message sizes in LibraBFT are not bounded, and, therefore, a fixed 𝛿𝑀 is
arguably over-simplified. In future work, we may enforce strict bounds on message sizes or see the
networking delay for each message as the composition of a fixed latency and a delay of transmission
proportional to the message size.

2.6. Leaders, Votes, Quorum Certificates

LibraBFT belongs to the family of leader-based consensus protocols. In leader-based protocols, val-
idators make progress in rounds, each having a designated validator called a leader. Leaders are
responsible for proposing new blocks and obtaining signed votes from the validators on their propos-
als. LibraBFT follows the chained variant of HotStuff [5], where a round is a communication phase
with a single designated leader, and leader proposals are organized into a chain using cryptographic
hashes. During a round, the leader proposes a block that extends the longest chain it knows. If
the proposal is valid and timely, each honest node will sign it and send a vote back to the leader.
After the leader has received enough votes to reach a quorum, it aggregates the votes into a Quorum
Certificate (QC) that extends the same chain again. The QC is broadcast to every node. If the leader
fails to assemble a QC, participants will timeout and move to the next round. Eventually, enough
blocks and QCs will extend the chain in a timely manner, and a block will match the commit rule of
the protocol. When this happens, the chain of uncommitted blocks up to the matching block become
committed.
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Figure 1: Integration of the SMR module into the Libra Blockchain

3. Integration with the Libra Blockchain

3.1. Consensus Protocol

We expect LibraBFT to be used in the Libra Blockchain [2] as follows:

• The validators of Libra participate in the LibraBFT protocol in order to securely replicate the
state of the Libra Blockchain. We call SMR module the software implementation of a LibraBFT
node run by each validator. From here on, we refer to participants of LibraBFT as validator
nodes, or simply nodes.

• Commands sent to the SMR module are sequences of Libra transactions. From the point of
view of the SMR module, commands and execution states are opaque data structures. The
SMR module delegates execution of commands entirely to the execution module of Libra (see
possible APIs in Appendix A.1). We read the epoch_id from the execution state. (Recall that
the current epoch stops when a change to epoch_id is committed.)

• Importantly, the SMR module also delegates to the rest of the system the computation of
voting rights within a given epoch. This is done using the same callbacks (Appendix A.1) to
the execution layer as the ones managing epochs. For better flexibility and transparency, we
expect this logic to be written in Move [35], the language for programmable transactions in
Libra.

• Every time a command needs to be executed, the execution engine is given a time value meant
for Move smart contracts. This value is guaranteed to be consistent across every SMR node
that executes the same command.

• Execution states seen by the SMR module need not be the actual blockchain data. In practice,
what we call “execution state” in this report is a lightweight data structure (e.g., a hash value)
that refers to a concrete execution state stored in the local storage of a validator. Every
command that is committed must be executed locally at least once by every validator. In the
future, LibraBFT may include additional mechanisms for a validator to synchronize with the
local storage of another validator corresponding to a recent execution state.

3.2. Libra Clients

The design of LibraBFT is mostly independent of how validator nodes interact with the clients of the
Libra system. However, we can make the following observations:
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• Transactions submitted by the clients of Libra are first shared between validator nodes using a
mempool protocol. Consensus leaders pull transactions from the mempool when they need to
make a proposal.

• To authenticate the state of blockchain with respect to Libra clients, during the protocol, Li-
braBFT nodes sign short commitments to vouch that a particular execution state is being
committed. This results in cryptographic commit certificates that are verifiable independently
from the details of the consensus protocol of LibraBFT, provided that Libra clients know the
set of validator keys for the corresponding epoch. We describe how commitments are created
together with consensus data in section (Section 4.1).

• Regarding this last assumption, for now, we will consider that Libra clients can learn the set
of validator keys from conventional interactions with one or several trusted validators. In the
future, we will provide a security protocol for this purpose.

3.3. Security

Blockchain applications also require additional security considerations:

• Participants to the protocol should be able to cap the amount of resources (e.g., CPU, memory,
storage, etc.) that they allocate to other nodes to ensure practical liveness despite Byzantine
behaviors. We will see in the next section (Section 4) that our data-communication layer
provides mechanisms to let receivers control how much data they consume (aka back pressure).
A more thorough analysis is left for future versions of this report.

• Economic incentives of rational nodes should be aligned with the security and the performance
of the SMR protocol. We sketch low-level mechanisms enabling reward and punishment in
section (Section 9).

• Leaders can be subject to targeted denial-of-service attacks. Our pacemaker specifications (Sec-
tion 7) sketches how to introduce a verifiable random function (VRF) [36] to assign leaders to
round numbers in a less predictable way. In the future, we may also influence leader selection
in order to select robust leaders more often. Protection of nodes at the system level is out of
the scope of this report.

Note on Fairness. Besides safety and liveness, another abstract property often discussed in SMR
systems is fairness. This notion is traditionally defined as the fact that every valid command sub-
mitted by an honest node is eventually committed. Yet, this classic definition is less relevant to a
blockchain application such as Libra, where transactions go through a shared mempool first and are
subject to auctions on transaction fees. We leave the discussion on fairness for future work.

4. Consensus Data and Networking

In this section, we introduce the core data types of LibraBFT, called records and discuss the commu-
nication framework used to synchronize node states over the network.
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Figure 2: A chain of records in LibraBFT

4.1. Records

The core state of a LibraBFT node consists of a set of records. We define four kinds of records:

• blocks, proposed by leaders at a given round number and containing commands to execute.
• votes, by which a node votes for a block and its execution state.
• quorum certificates (QCs), which hold a quorum of votes for a given block and its execution

state — and optionally a commitment meant for Libra clients.
• timeouts, by which a node certifies that its current round has reached a timeout.

Precise data structures in Rust are provided in the next paragraph. Most importantly:

• Records are signed by their authors.
• Blocks are chained (Figure 2): they must include the hash of the QC of a block at a lower round

— or at the beginning of an epoch, a fixed hash value ℎinit set during the initialization of the
epoch.

• Votes and QCs include the hash of the block and the execution state that are the objects of the
votes.

A QC is created by gathering enough votes to form a quorum (Section 2.3) in favor of the same
execution state, according to the voting rights of the current epoch. The fact that quorum certificates
are signed by their author is not essential to the protocol: this is meant only to limit the influence of
the next leader(s) regarding voter rewards (see Section 9 on economic incentives).

Votes and QCs include an optional commitment value prepared for Libra clients. When a voter
detects that gathering a QC on the voted block will trigger a commit for an earlier block in the
chain, it must populate the field commitment with the execution state of that earlier block (see also
the commit rule in Section 5.3 below). In this way, a QC with a non-empty field commitment acts
as commit certificate — that is, a short cryptographic proof that a particular state was committed.
Since we included the epoch identifier in the QC, such a commit certificate can be verified in isolation
as long as one knows the set of validators for this epoch.

We include a redundant round number in votes and QCs for technical reasons related to data-
synchronization messages (Appendix A.3).

When necessary, we will distinguish network records — records that have just been received from
the network — from verified records, which have been thoroughly verified to ensure strong invariants
defined in the next section (Section 4.2). However, we generally use records for verified records when
the context is clear.

Importantly, invariants enforced by record verification (e.g., chaining rules) and the initial conditions
guarantee that the records of a given epoch form a tree — with the exception of timeouts, which are
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not chained. For each node, the data structure holding the records of an epoch is called a record store.
We say that a node knows a record if it is present in the record store of its current epoch. We sketch
the possible interfaces of the record store object in Appendix A.2. We will make explicit when nodes
may delete (clean up) records from their record stores to minimize storage as part of the description
of the protocol in Section 5.7.

Data structures in Rust. We assume the following primitive data types:

• EpochId (an integer).
• Round (an integer).
• NodeTime (the system time of a node).
• BlockHash and QuorumCertificateHash (hash values).
• Author (identifier of a consensus node).
• Signature (a digital signature).

The network records of LibraBFT are specified using Rust syntax in Table 1.

Hashing and Signing. We assume that the data fields of records can be hashed to produce deter-
ministic hashing values. By deterministic hashes, we mean that the hashes of two data structures
should be equal if and only if the content of the data structures are equal (also see Section 2.4 on
cryptographic assumptions).

The hashing of records should include a type-related tag followed by all the fields in the record, except
the field signature. Signatures of records apply to their hashing value.

The signatures in the vector of votes of a QC are copied from the original Vote records that were
selected by the author of the QC.

4.2. Verification of Network Records

At the beginning of an epoch, consensus nodes agree on an initial value ℎinit of type QuorumCer-
tificateHash. For example, we may define ℎinit = hash(seed || epoch_id) for some fixed value
seed.

Every consensus node sequentially verifies all the records that it receives from the network:

• All signatures should be valid signatures from a node of the current epoch.
• BlockHash values should refer to previously verified blocks.
• QuorumCertificateHash values should refer to verified quorum certificates or the initial

hash ℎinit.
• Rounds should be strictly increasing for successive blocks in a chain of blocks and quorum

certificates. Round numbers in proposed blocks restart at round 1 at every epoch.
• The author of a QC should be the author of the previous block.
• Epoch identifiers in timeouts, votes, and QCs must match the current epoch.
• Round values in votes and QCs must match the round of the certified block.
• The commitment value in a vote or in quorum certificate should be consistent with the commit

rule (Section 5.3). If present, it should be signed by the same set of authors as the certified
block.

• Network records that fail to verify should be skipped.

Given the constraints on hashes of blocks and QCs, except for timeouts, the verified records known
to a node form a tree whose root is the value ℎinit (Lemma S1).
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/// A record read from the network.
enum Record {

/// Proposed block, containing a command, e.g. a set of Libra transactions.
Block(Block),
/// A single vote on a proposed block and its execution state.
Vote(Vote),
/// A quorum of votes related to a given block and execution state.
QuorumCertificate(QuorumCertificate),
/// A signal that a particular round of an epoch has reached a timeout.
Timeout(Timeout),

}

struct Block {
/// User-defined command to execute in the state machine.
command: Command,
/// Time proposed for command execution.
time: NodeTime,
/// Hash of the quorum certificate of the previous block.
previous_quorum_certificate_hash: QuorumCertificateHash,
/// Number used to identify repeated attempts to propose a block.
round: Round,
/// Creator of the block.
author: Author,
/// Signs the hash of the block, that is, all the fields above.
signature: Signature,

}

struct Vote {
/// The current epoch.
epoch_id: EpochId,
/// The round of the voted block.
round: Round,
/// Hash of the certified block.
certified_block_hash: BlockHash,
/// Execution state.
state: State,
/// Execution state of the ancestor block (if any) that will match
/// the commit rule when a QC is formed at this round.
commitment: Option<State>,
/// Creator of the vote.
author: Author,
/// Signs the hash of the vote, that is, all the fields above.
signature: Signature,

}

struct QuorumCertificate {
/// The current epoch.
epoch_id: EpochId,
/// The round of the certified block.
round: Round,
/// Hash of the certified block.
certified_block_hash: BlockHash,
/// Execution state
state: State,
/// Execution state of the ancestor block (if any) that matches
/// the commit rule thanks to this QC.
commitment: Option<State>,
/// A collections of votes sharing the fields above.
votes: Vec<(Author, Signature)>,
/// The leader who proposed the certified block should also sign the QC.
author: Author,
/// Signs the hash of the QC, that is, all the fields above.
signature: Signature,

}

struct Timeout {
/// The current epoch.
epoch_id: EpochId,
/// The round that has timed out.
round: Round,
/// Creator of the timeout object.
author: Author,
/// Signs the hash of the timeout, that is, all the fields above.
signature: Signature,

}

Table 1: Network records in LibraBFT
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4.3. Communication Framework

In LibraBFT, the communication framework builds a peer-to-peer overlay for the reliable dissemi-
nation of protocol records (Section 4.1) among the validators. The framework API consists of two
primitives actions: (i) send, where the node updates a peer with the records it has; (ii) broadcast,
where the node disseminates updates to all its peers.

In order to provide reliable delivery guarantees to honest nodes, LibraBFT builds gossip overlay on
top of a point-to-point synchronization protocol. Briefly, a node that wishes to broadcast sends its
data to a random subset of at least 𝐾 nodes, for some fixed value 𝐾 (0 < 𝐾 ≤ 𝑁). Receiving nodes
reshare relevant data in the same way.

The exact nature of the “relevant” data sent and reshared during network actions is part of the
description of the LibraBFT protocol (Section 7.11). In the first reading, one may simply consider
that a node reshares every valid record that it knows every time its record store is updated.

Resharing data is important to make the broadcast action reliable [23] in the following sense: if
an honest node receives (relevant) data, then — with high probability — every other honest node
will know about these data shortly after. Importantly, this holds even if the origin of the data is a
malicious node.

Randomized gossip provides the following broadcast guarantee:

(probabilistic-reliable-broadcast) After GST, if an honest node receives or possesses
data that requires gossiping, then — with high probability — before an (unknown) time
delay 𝛿𝐺 > 0, every other honest node will have received these data.

We interpret this requirement in a broad sense that allows data to be updated along the way. We
also allow several senders to initiate the gossiping of the same data in parallel during an interval of
time [𝑡1; 𝑡2] and assume that the data is received by all honest nodes by time 𝑡2 + 𝛿𝐺.

Note on choosing the fan-out factor. The fan-out factor 𝐾 is generally chosen to be much smaller
than the number of nodes, as a trade-off between networking delay and scalability. We leave for future
work how to choose a value 𝐾 so that the requirement above follows from the classic assumption
(eventually-synchronous-network) on single messages after GST. For now, we may simply choose
𝐾 = 𝑁 to include every node, and let 𝛿𝐺 = 𝛿𝑀 .

4.4. Data Synchronization

Because of resharing and the possibility of crashes, a naive approach, where senders push their
records directly to receivers, would lead to receiving and retransmitting the same data many times.
In general, we wish to let senders initiate communication but give more control to receivers on how
they consume data. In LibraBFT, this is addressed by introducing an exchange protocol called data
synchronization.

Sending data from one sender to other nodes is done in multiple steps:

• Make the new data available (i.e., passively publish it) as part of the data-synchronization
service of the sender.

• Send a notification, called a DataSyncNotification message, to each receiver according to the
nature of the communication: a single receiver for point-to-point communication, a random
subset otherwise.
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• Let receivers connect back to the sender with DataSyncRequest message and retrieve data
contained in a DataSyncResponse message.

When the exchange is completed, a receiver should validate received data immediately, then make all
valid and relevant data available as a server. As mentioned earlier, new data may require notifying
further nodes to complete the reliable broadcast.

4.5. Runtime Environment

For the purpose of specifying and simulating LibraBFT, we abstract away details about processes,
networking, timers, and, generally, the operating systems of nodes under the generic term runtime
environment. We will specify the behavior of LibraBFT nodes as the combination of a private local
state and a small number of algorithms called handlers. A handler typically mutates the local state
of the current node and returns a value. Specifications will require the runtime environment to call
handlers at specific times and interpret returned values right away.

4.6. Data-Synchronization Handlers

We now specify the handlers for data synchronization. We require the runtime environment to
carry the messages sketched in Section 4.4 (namely DataSyncNotification, DataSyncRequest, and
DataSyncResponse) to their intended recipient in an authenticated channel, at a speed depending
on the current network conditions. We create three corresponding handlers to be called when a
message is received and returning a possible answer. An additional handler create_notification
is used when the main handler of node (Section 5.6) requests the environment to send a notification
to specific senders.

Interface in Rust. We express the data-synchronization handlers as a Rust trait as follows:
trait DataSyncNode {

/// Sender role: what to send to initiate a data-synchronization exchange.
/// We only include our current vote when notifying a proposer.
fn create_notification(&self, include_vote: bool) -> DataSyncNotification;
/// Sender role: handle a request from a receiver.
fn handle_request(&mut self, request: DataSyncRequest) -> DataSyncResponse;
/// Receiver role: accept or refuse a notification from an authenticated sender.
fn handle_notification(

&mut self,
authenticated_sender: Author,
notification: DataSyncNotification,
smr_context: &mut SMRContext,

) -> Option<DataSyncRequest>;
/// Receiver role: receive data from an authenticated sender.
fn handle_response(

&mut self,
authenticated_sender: Author,
response: DataSyncResponse,
smr_context: &mut SMRContext,

);
}

Data-synchronization handlers continuously query and update the record store of a node, indepen-
dently from the main handler of the protocol, which will be presented in Section 5. Possible definitions
for the three message types are given in Appendix A.3.
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4.7. Mathematical Notations

We have seen that records that fail to be verified are rejected from receiving nodes. Unless mentioned
otherwise, all records considered from now on are verified records.

We use the letter 𝛼 to denote a node of the protocol. We write record_store(𝛼) for the record store
of 𝛼 at a given time. We use the symbol || to denote the concatenation of bit strings.

We introduce the following notations regarding records:

• We use the letter 𝐵 to denote block values; 𝐶 to denote quorum certificates; 𝑉 for votes; 𝑇 for
timeouts; and, finally, 𝑅 to denote either blocks or certificates.

• We use ℎ, ℎ1, etc., to denote hash values of type QuorumCertificateHash or BlockHash. We
use letters 𝑛, 𝑛1, etc., for rounds.

• We write round(𝐵) for the field round of a block and, more generally, foo(𝑅) for any field foo
of a record 𝑅.

• If ℎ = certified_block_hash(𝐶), we write ℎ ← 𝐶. Similarly, we write ℎ ← 𝑉 in case of a
single vote 𝑉 . If ℎ = previous_quorum_certificate_hash(𝐵), we write ℎ ← 𝐵.

• More generally, we see ← as a relation between hashes, blocks, votes, and quorum certificates.
We may write 𝐵 ← 𝐶 instead of hash(𝐵) ← 𝐶, 𝐵 ← 𝑉 for hash(𝐵) ← 𝑉 , and 𝐶 ← 𝐵 instead
of hash(𝐶) ← 𝐵.

• Finally, we write ←∗ for the transitive and reflexive closure of ←, that is: 𝑅0 ←∗ 𝑅𝑛 if and
only if 𝑅0 ← 𝑅1 … ← 𝑅𝑛, 𝑛 ≥ 0.

5. The LibraBFT Protocol

5.1. Overview of the Protocol

Each consensus node 𝛼 maintains a local tree of records for the current epoch, previously noted
record_store(𝛼). The initial root of the tree, a QC hash noted ℎinit, is agreed upon as part of the
setup for the consensus epoch. Each branch in the tree is a chain of records, alternating between
blocks 𝐵𝑖 and quorum certificates 𝐶𝑖. Formally, such as a chain is denoted: ℎinit ← 𝐵1 ← 𝐶1 … ←
𝐵𝑛[← 𝐶𝑛].
When a node acts as a leader (Figure 3), it must propose a new block of transactions 𝐵𝑛+1, usually
extending the tail quorum certificate 𝐶𝑛 of (one of) its longest branch(es) ( 1 ). Assuming that the
proposal 𝐵𝑛+1 is successfully broadcast, honest nodes will verify the data, execute the new block,
and send back a vote to the leader ( 2 ). In the absence of execution bugs, honest nodes should agree
on the execution state after 𝐵𝑛+1. Upon receiving enough votes agreeing with this execution state,
the proposer will create a quorum certificate 𝐶𝑛+1 for this block and broadcast it ( 3 ). The chain
length has now increased by one: ℎinit ← 𝐵1 ← 𝐶1 … ← 𝐵𝑛+1 ← 𝐶𝑛+1. At this point, the leader is
considered done, and another leader is expected to extend the tree with a new proposal.

Due to network delays and malicious nodes, honest nodes may not always agree on the “best” branch
to extend and for which blocks to vote. Under BFT assumption (Section 2.3), the voting constraints
observed by honest nodes guarantee that when a branch grows enough to include a block 𝐵 that sat-
isfies the commit rule, 𝐵 and its predecessors cannot be challenged by conflicting proposals anymore.
These blocks are thus committed in order to advance the replicated state machine.

To guarantee progress despite malicious nodes or unresponsive leaders, each proposal includes a round
number. A round will time out after a certain time. When the next round becomes active, a new
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Figure 3: Overview of the LibraBFT protocol (simplified, excluding round synchronization)

leader is expected to propose a block. The pacemaker abstraction (Section 7.3) aims to make honest
nodes agree on a unique, active round for sufficiently long periods of time.

We can now rephrase the main goals of the LibraBFT protocol as follows:

(safety) New commits always extend a chain containing all the previous commits.

(liveness) If the network is synchronous for a sufficiently long time, eventually a new
commit is produced.

Layout of the description of LibraBFT. In the rest of this section, we make precise the commit rule
(Section 5.3) and the voting constraints (Section 5.4 and Section 5.5). Then, using the communication
framework described previously in Section 4, we proceed to describe the local state and the behaviors
of nodes in the LibraBFT protocol (Section 5.6 and Section 5.7).

This section provides the prerequisites for the proof of safety given in Section 6. Liveness mechanisms
will be presented in Section 7 and followed by the proof of liveness in Section 8.

5.2. Chains

A 𝑘-chain is a sequence of 𝑘 blocks and 𝑘 QCs:

𝐵0 ← 𝐶0 ← … ← 𝐵𝑘−1 ← 𝐶𝑘−1

𝐵0 is called the head of such a chain. 𝐶𝑘−1 is called the tail.

Recall that by definition of the notion of round for blocks, rounds must be strictly increasing along
a chain: round(𝐵𝑖) < round(𝐵𝑖+1).
When rounds increase exactly by one — that is, round(𝐵𝑖) + 1 = round(𝐵𝑖+1) — we say that the
chain has contiguous rounds.

In practice, the round numbers of a chain may fail to be contiguous for many reasons. For example,
a dishonest leader may propose an invalid block, or a leader may fail to gather a quorum of votes in
a timely manner because of network issues. When a quorum certificate is not produced in a round, a
leader at a higher round will eventually propose a block that breaks contiguity in the chain.
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5.3. Commit Rule

A block 𝐵0 is said to match the commit rule of HotStuff in the record store of a node if and only if it
is the head of a 3-chain with contiguous rounds, that is, there exist 𝐶0, 𝐵1, 𝐶1, 𝐵2, 𝐶2 such that

𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2

and
round(𝐵2) = round(𝐵1) + 1 = round(𝐵0) + 2

When such a commit rule is observed by a node 𝛼, the blocks preceding 𝐵0 in the record store of 𝛼,
and 𝐵0 itself becomes committed.

Following our previous discussion (Section 4.1) on commitments, a valid quorum certificate in the
position of 𝐶2 acts as a commit certificate: it must include a non-empty field value commitment to
authenticate that the execution state state(𝐶0) was committed in the current epoch. Note that if
commitment is empty then 𝐶2 is not a valid record, and it should be ignored (Section 4.2).

5.4. First Voting Constraint: Increasing Round

Safety of the commit rule relies on two voting constraints. The first one concerns the rounds of voted
blocks:

(increasing-round) An honest node that voted once for 𝐵 in the past may only vote for
𝐵′ if round(𝐵) < round(𝐵′).

This voting constraint is important for quorum certificates (see Section 6). In practice, a node 𝛼 will
track the round of its latest vote in a local variable noted latest_voted_round(𝛼), and only vote
for a block 𝐵 if round(𝐵) > latest_voted_round(𝛼).

5.5. Second Voting Constraint: Locked Round

The locked round of a node 𝛼, written locked_round(𝛼), is the highest round of the head of a 2-chain
ever known to 𝛼, if any, and zero otherwise. In practice, we may initialize the value locked_round(𝛼)
to 0 and update it to round(𝐵0) whenever a new 2-chain 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 such that round(𝐵0) >
locked_round(𝛼) is found in record_store(𝛼).
We also define the previous round of a block 𝐵 as follows: if there exist 𝐵′ and 𝐶′ such that
𝐵′ ← 𝐶′ ← 𝐵, we let previous_round(𝐵) = round(𝐵′); otherwise, previous_round(𝐵) = 0.

We can now formulate our second voting constraint:

(locked-round) An honest node 𝛼 may only vote for a block 𝐵 if it currently holds that
previous_round(𝐵) ≥ locked_round(𝛼).

The voting constraint (locked-round) was adapted from the most recent version of HotStuff [5]. In
LibraBFT, it is simplified into a single-clause condition.

5.6. Local State of a Consensus Node and Main Handler API

We can now describe the protocol followed by a LibraBFT node in terms of a local state and a handler
called by the runtime environment (Section 4.5).
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Local state. As mentioned previously, the core component of the state of a node 𝛼 consists of the
current record store (Section 4.2) — written as record_store(𝛼) — which contains all the verified
records that 𝛼 stores locally for the current epoch.

The state of node also includes a number of variables related to leader election. We group them into
a special object called a pacemaker and describe them in Section 7.3.

Additional state variables needed by an instance of the protocol include:

• The current epoch identifier epoch_id(𝛼), used to detect the end of the current epoch;
• The identifier of 𝛼 as an author of records, written local_author(𝛼);
• The round of the latest voted block latest_voted_round(𝛼), (initial value: 0);
• The locked round locked_round(𝛼), (initial value: 0);
• The identities and the active rounds of the latest nodes that synchronized with us, denoted

latest_senders (initial value: the empty list); and
• The system time of the last broadcast latest_broadcast(𝛼), (initial value: the starting time

of the epoch).

The state of a node includes an object, called data tracker, responsible for tracking data that the
main handler has already processed, notably commits, and deciding if new data need to be reshared.
We give more details about the data tracker in Section 7.11.

Finally, the state of a node also includes the record stores of all the previous epochs. Those epochs
are now stopped, meaning that no new records can be inserted.

Main handler API. In LibraBFT, the main handler of a consensus node consists of a single algorithm
update_node that must be called by the runtime environment on three occasions:

• Whenever the node starts or restarts after a crash;
• Whenever a data-synchronization exchange was completed (Section 4.6); and
• Regularly, at a given time scheduled by the last run of the handler itself.

The main handler reacts to the changes observed in the record store or in the clock by returning a
list of action items to be carried by the runtime environment. Specifically:

• The main handler may require that a new call to update_node be scheduled at a given time in
the future;

• It may specify that a data notification should be sent to particular leader; and
• It may ask to broadcast data notifications.

The implementation of the main handler is the core of the LibraBFT protocol. It is described in
detail in Section 5.7.

Rust definitions. In Rust, the local state of a node is written as follows:
struct NodeState {

/// Module dedicated to storing records for the current epoch.
record_store: RecordStoreState,
/// Module dedicated to leader election.
pacemaker: PacemakerState,
/// Current epoch.
epoch_id: EpochId,
/// Identity of this node.
local_author: Author,
/// Highest round voted so far.
latest_voted_round: Round,
/// Current locked round.
locked_round: Round,
/// Time of latest broadcast.
latest_broadcast: NodeTime,
/// Names and rounds of the latest senders during network communication.
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latest_senders: Vec<(Author, Round)>,
/// Track data to which the main handler has already reacted.
tracker: DataTracker,
/// Record stores from previous epochs.
past_record_stores: HashMap<EpochId, RecordStoreState>,

}

The main handler API, update_node, is written:
trait ConsensusNode {

fn update_node(&mut self, clock: NodeTime, smr_context: &mut SMRContext) -> NodeUpdateActions;
}

This definition assumes that the runtime environment provides the following inputs:

• The current node state (self in Rust);
• The current system time (clock); and
• A context for SMR operations such as command execution (smr_context).

Recall that the trait ConsensusNode comes in addition to the trait DataSyncNode (Section 4.6), which
provide handlers for data synchronization. The trait SMRContext is made precise in Appendix A.1.

Action items returned by the function update_node are held in the following data structure:
struct NodeUpdateActions {

/// Time at which to call `update_node` again, at the latest.
should_schedule_update: Option<NodeTime>,
/// Whether we need to send a notification to a leader.
should_notify_leader: Option<Author>,
/// Whether we need to send notifications to a random subset of nodes.
should_broadcast: bool,

}

5.7. Main Handler Implementation

We now describe the implementation of the main handler of a LibraBFT node in Rust (Table 2).

At a high level, the algorithm realizes the following operations:

• Run the pacemaker module and execute requested pacemaker actions, such as creating a timeout
or proposing a block.

• Execute and vote for a valid proposed block, if any, while respecting the two voting constraints
regarding the latest voted round (Section 5.4) and the locked round (Section 5.5).

• If the node proposed a block and if a quorum of votes for the same state was received, create a
quorum certificate.

• Check for newly found commits in the record store and deliver them to the state-machine
replication context.

• Check for a commit that would terminate the current epoch, and start a new one if needed.
• Decide if the node should reshare (i.e., gossip) its data.

This algorithm relies on the record store of a node for computing the round of the highest
head of a known 2-chain (highest_2chain_head_round), the head of the highest commit rule
(highest_committed_round), and the tail QC of a commit rule (commit_certificate).

The method chain_between_quorum_certificates takes two rounds 𝑚 and 𝑛 (𝑚 ≤ 𝑛) as inputs. If
the record store contains a chain 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← … ← 𝐵𝑘 ← 𝐶𝑘 with round(𝐵0) = 𝑚 and
round(𝐵𝑘) = 𝑛, then it will return an iterator on the QCs 𝐶1, … , 𝐶𝑘, in this order. (See Appendix A.2
for detailed interfaces.)
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impl ConsensusNode for NodeState {
fn update_node(&mut self, clock: NodeTime, smr_context: &mut SMRContext) -> NodeUpdateActions {

// Update pacemaker state and process pacemaker actions (e.g., creating a timeout, proposing a block).
let latest_senders = self.read_and_reset_latest_senders();
let pacemaker_actions = self.pacemaker.update_pacemaker(

self.local_author,
&self.record_store,
self.latest_broadcast,
latest_senders,
clock,

);
let mut actions = self.process_pacemaker_actions(pacemaker_actions, smr_context);
// Update locked round.
self.locked_round = std::cmp::max(self.locked_round, self.record_store.highest_2chain_head_round());
// Vote on a valid proposal block designated by the pacemaker, if any.
if let Some((block_hash, block_round, proposer)) = self.record_store.proposed_block(&self.pacemaker) {

// Enforce voting constraints.
if block_round > self.latest_voted_round

&& self.record_store.previous_round(block_hash) >= self.locked_round
{

// Update latest voted round.
self.latest_voted_round = block_round;
// Try to execute the command contained the a block and create a vote.
if self.record_store.create_vote(self.local_author, block_hash, smr_context) {

// Ask that we reshare the proposal.
actions.should_broadcast = true;
// Ask to notify and send our vote to the author of the block.
actions.should_notify_leader = Some(proposer);

}
}

}
// Check if our last proposal has reached a quorum of votes and create a QC.
if self.record_store.check_for_new_quorum_certificate(self.local_author, smr_context) {

// The new QC may cause a change in the pacemaker state: schedule a new run of this handler now.
actions.should_schedule_update = Some(clock);

}
// Check for new commits and verify if we should start a new epoch.
for commit_qc in self

.record_store

.chain_between_quorum_certificates(
self.tracker.highest_committed_round,
self.record_store.highest_committed_round(),

)
.cloned()

{
// Deliver the new committed state, together with a short certificate (if any).
smr_context.commit(&commit_qc.state, self.record_store.commit_certificate(&commit_qc));
// If the current epoch ended..
let epoch_id = smr_context.read_epoch_id(&commit_qc.state);
if self.epoch_id != epoch_id {

// .. create a new record store and switch to the new epoch.
self.start_new_epoch(epoch_id, commit_qc, smr_context);
// .. stop delivering commits after an epoch change.
break;

}
}
// Update the data tracker and ask that we reshare data if needed.
if self.tracker.update_and_decide_resharing(self.epoch_id, &self.record_store) {

actions.should_broadcast = true;
}
// Return desired node actions to environment.
actions

}
}

Table 2: Main handler of a LibraBFT node
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The main handler also uses additional interfaces related to liveness and described in later sections:

• The Pacemaker trait provides a function update_pacemaker to control leader election,
timeouts, and proposals; the returned action items are processed by a method pro-
cess_pacemaker_actions; and the method proposed_block of RecordStore also uses the
pacemaker to select an active proposal that a node can vote for, if any (Section 7.3).

• The DataTracker object provides the latest commit processed so far, as well as a method
update_and_decide_resharing to update the latest commit value (among others) and control
gossiping (Section 7.11).

Epoch changes. As soon as a commit QC ends the current epoch of a node, this node stops delivering
commits in this epoch, the current record store is archived, and a record store for the new epoch is
created. The record stores of all the previous epochs are required for liveness: a node must always
able to learn the latest commit rule of the latest epoch of the sender during data synchronization,
disregarding its current state (see also Section 7.11).

The chain of commits between the block containing the epoch changes and the block triggering the
commit rule may be arbitrarily long depending on network conditions. To avoid persisting data that
will not be committed, we may require proposers to propose only empty commands once an epoch
change is detected on a branch.

6. Proof of Safety

In the proof of safety, we consider the set of all records ever seen by honest nodes in the current
epoch and prove that committed blocks must form a linear chain ℎinit ← 𝐵1 ← 𝐶1 ← 𝐵2 … ← 𝐵𝑛,
starting from the initial QC hash ℎinit of the epoch.

6.1. Preliminaries

We start by recalling the proof of the classical BFT lemma:

Lemma B1: Under BFT assumption, for every two quorums of nodes in the same epoch, there
exists an honest node that belongs to both quorums.

Proof: Let 𝑀𝑖 ≥ 𝑁 −𝑓 (𝑖 = 1, 2) be the combined voting power of each quorum. The voting powers
𝑀 ′

𝑖 of each quorum, excluding Byzantine nodes, satisfies 𝑀 ′
𝑖 ≥ 𝑀𝑖 − 𝑓 ≥ 𝑁 − 2𝑓 . We note that if

the two sets were disjoint, the voting power of the union 𝑀 ′
1 + 𝑀 ′

2 ≥ 2𝑁 − 4𝑓 > 𝑁 − 𝑓 would exceed
the voting power of all honest nodes. Therefore, there exists an honest node in both quorums. □

Next, we prove two new lemmas. The first one concerns the chaining of records.

Lemma S1: For any records 𝑅, 𝑅0, 𝑅1, 𝑅2:

• ℎinit ←∗ 𝑅;
• If 𝑅0 ← 𝑅2 and 𝑅1 ← 𝑅2 then 𝑅0 = 𝑅1; and
• If 𝑅0 ←∗ 𝑅2, 𝑅1 ←∗ 𝑅2 and round(𝑅0) < round(𝑅1) then 𝑅0 ←∗ 𝑅1.
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Proof:

• By definition of verified records (Section 4.2).
• By definition of chaining, assuming that hashing is perfectly collision resistant.
• By induction on the derivation 𝑅1 ←∗ 𝑅2, using the previous item and the fact that rounds

cannot decrease in a chain. □

The second lemma concerns the first voting rule and the notion of quorum certificates.

Lemma S2: Consider two blocks with QCs: 𝐵 ← 𝐶 and 𝐵′ ← 𝐶′. Under BFT assumption, if
round(𝐵) = round(𝐵′), then 𝐵 = 𝐵′ and state(𝐶) = state(𝐶′).
In particular, for every 𝑘 > 0, there is a unique block that has the highest round amongst the heads
of 𝑘-chains known to a node.

Proof: Under BFT assumption, there must exist an honest node that voted both for the winning
proposal state(𝐶) in 𝐶 and for state(𝐶′) in 𝐶′. By the voting rule (increasing-round), we must
have 𝐵 = 𝐵′ and state(𝐶) = state(𝐶′). □

6.2. Main Safety Argument

We say that two (distinct) records 𝑅, 𝑅′ are conflicting when neither 𝑅 ←∗ 𝑅′ nor 𝑅′ ←∗ 𝑅.

Lemma S3: Assume a 3-chain starting at round 𝑛0 and ending at round 𝑛2. For every certified block
𝐵 ← 𝐶, such that round(𝐵) > 𝑛2, under BFT assumption, we have previous_round(𝐵) ≥ 𝑛0.

Proof: Let 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 be a 3-chain starting at round 𝑛0 = round(𝐵0) and
ending at round 𝑛2 = round(𝐵2).
Under BFT assumption, there exists an honest node 𝛼 whose vote is included both in 𝐶2 (voting for
𝐵2) and 𝐶 (voting for 𝐵). Since round(𝐵) > 𝑛2, by the voting rule (increasing-round), 𝛼 must have
voted for 𝐵2 first. At that time, 𝛼 had already seen the 2-chain starting with 𝐵0. Since the locked
round never decreases, its locked round was at least round(𝐵0) = 𝑛0. At the later time of voting
for 𝐵, the locked round of 𝛼 was again at least 𝑛0. Therefore, the voting rule (locked-round) implies
that previous_round(𝐵) ≥ 𝑛0. □

Proposition S4: Assume a 3-chain with contiguous rounds starting with a block 𝐵0 at round 𝑛0. For
every certified block 𝐵 ← 𝐶, such that round(𝐵) ≥ 𝑛0, under BFT assumption, we have 𝐵0 ←∗ 𝐵.

Proof: By induction on round(𝐵) ≥ 𝑛0. Let 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 be a 3-chain
starting with 𝐵0 and with contiguous rounds: round(𝐵0)+2 = round(𝐵1)+1 = round(𝐵2) = 𝑛0+2.

If round(𝐵) ≤ 𝑛0 + 2, then round(𝐵) is one of the values 𝑛0, 𝑛0 + 1, 𝑛0 + 2. By Lemma S2, 𝐵 is one
of the values 𝐵0, 𝐵1, 𝐵2; therefore, 𝐵0 ←∗ 𝐵.

Otherwise, assume round(𝐵) > 𝑛0 + 2, that is, round(𝐵) > round(𝐵2). By Lemma S3, we have
previous_round(𝐵) ≥ 𝑛0. Since 𝑛0 = round(𝐵0) > 0, this means there exists a chain 𝐵3 ← 𝐶3 ← 𝐵
such that round(𝐵3) ≥ 𝑛0. Since round(𝐵3) ≥ 𝑛0 and round(𝐵3) < round(𝐵), we may apply the
induction hypothesis on 𝐵3 to deduce that 𝐵0 ←∗ 𝐵3. Therefore, 𝐵0 ←∗ 𝐵3 ←∗ 𝐵 concludes the
proof. □

Theorem S5 (Safety): Under BFT assumption, two blocks that match the commit rule cannot be
conflicting.
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Proof: Consider the commit rules of two blocks 𝐵0 and 𝐵′
0 that match the commit rule: 𝐵0 ←

𝐶0 ← 𝐵1 ← 𝐶1 ← 𝐵2 ← 𝐶2 and 𝐵′
0 ← 𝐶′

0 ← 𝐵′
1 ← 𝐶′

1 ← 𝐵′
2 ← 𝐶′

2 (with contiguous rounds in both
cases). Without loss of generality, we may assume that round(𝐵′

0) ≥ round(𝐵0). By Proposition S4,
this implies 𝐵0 ←∗ 𝐵′

0. □

Corollary S6: Under BFT assumption, the set of all commits seen by any honest node since the
beginning of the current epoch form a linear chain ℎinit ← 𝐵1 ← 𝐶1 ← 𝐵2 … ← 𝐵𝑛.

Proof: Using Theorem S5, by induction on the number of commits. □

7. Liveness Mechanisms of LibraBFT

LibraBFT follows the example of HotStuff [5] and delegates leader election to a special module called
a pacemaker. We now describe the pacemaker of LibraBFT in detail, as well as the policies for
resharing data and cleaning the record store. These mechanisms are all crucial for liveness, as we will
see in the proofs of Section 8.

7.1. Timeout certificates.

We define a Timeout Certificate (TC) as a set of timeout objects at the same round 𝑛, such that
the combined voting power of timeout authors exceeds 𝑓 . The round of a timeout certificate is the
common round value 𝑛.

7.2. Overview of the Pacemaker

Given the latest committed block and its QC, noted 𝐵𝑐 ← 𝐶𝑐, we assign a leader and a maximum
duration to every round number 𝑛 > round(𝐵𝑐) + 2. A consensus node enters a round 𝑛 whenever it
receives a QC at round 𝑛 − 1, or enough timeouts to form a TC at round 𝑛 − 1, whichever comes first.
The round 𝑛 is then considered active until the node enters round 𝑛 + 1. While a node has active
round 𝑛, it may only vote for a block at round 𝑛 authored by the leader of round 𝑛.

To achieve liveness despite malicious or unresponsive leaders, nodes start a timer when they enter a
round and verify that the elapsed time has not passed the current maximum duration of the round.
New timeout objects are gossiped immediately. Once enough timeouts have been shared, a node will
observe a TC and change their active round — that is, unless the node learned a QC first, which also
updates the active round. The maximum duration of an active round is subject to be updated if the
latest committed block changes while the round is active.

Importantly, when a node enters a round that makes it a leader, it must wait for a quorum of nodes
to confirm that they entered the round as well before proposing a block. This is important so that
the proposed block can provably meet the second voting constraint computed by a quorum of honest
nodes (Section 8.3).

Finally, during periods of asynchrony, some nodes may become unaware of the latest committed block.
To recover from this situation after GST, we make sure that nodes broadcast their states at least
once per period of time 𝐼 > 0.
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7.3. Pacemaker State and Update API

We specify the pacemaker module at a high level in the same way as the node itself (Section 5.6) in
terms of local state and an update API.

Visible pacemaker state. The pacemaker module is in charge of driving leader election. As such, it
exposes two important state values to the other components of a LibraBFT node:

• The current active round, denoted active_round(𝛼), (initial value: 0);
• The leader of the current round, written active_leader(𝛼), (initial value: ⊥).

These two values are accessed notably by the function proposed_block of the record store, which
was used earlier in the main handler update_node (Section 5.7). Specifically, this function ensures
that the block 𝐵 that we may vote for satisfies round(𝐵) = active_round(𝛼) and author(𝐵) =
active_leader(𝛼).
The rest of the pacemaker state will be described in Section 7.9.

Pacemaker update API. We expect a pacemaker module to provide a method update_pacemaker,
meant to be called by the higher-level method update_node. This method should refresh the state of
the pacemaker in the function of the input arguments and return a list of action items for the main
handler of a node to process.

Action items returned by update_pacemaker are similar to the action items returned by update_node,
augmented with the two internal action items:

• The pacemaker may instruct the node to create a timeout object for the given round.
• The pacemaker may require that the node act as the leader and propose a new block.

Rust definitions. The Rust trait for a pacemaker module is written as follows:
trait Pacemaker {

/// Update our state from the given data and return some action items.
fn update_pacemaker(

&mut self,
// Identity of this node
local_author: Author,
// Tree of records
record_store: &RecordStore,
// Local time of the latest broadcast by us
latest_broadcast: NodeTime,
// Known active rounds of recent senders
latest_senders: Vec<(Author, Round)>,
// Current local time
clock: NodeTime,

) -> PacemakerUpdateActions;

/// Current active round and current leader.
fn active_round(&self) -> Round;
fn active_leader(&self) -> Option<Author>;

}

The parameters passed to update_pacemaker were described previously in the main handler up-
date_node (Table 2).

The pacemaker action items returned by update_pacemaker can be described as follows:
struct PacemakerUpdateActions {

/// Time at which to call `update_pacemaker` again, at the latest.
should_schedule_update: Option<NodeTime>,
/// Whether we should create a timeout object for the given round.
should_create_timeout: Option<Round>,
/// Whether we need to send our records to the given next leader.
should_notify_leader: Option<Author>,
/// Whether we need to broadcast our records.
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should_broadcast: bool,
/// Whether to propose a block and on top of which QC hash.
should_propose_block: Option<QuorumCertificateHash>,

}

These action items are interpreted by update_node and turned into node action items as follows:
impl NodeState {

fn process_pacemaker_actions(
&mut self,
pacemaker_actions: PacemakerUpdateActions,
smr_context: &mut SMRContext,

) -> NodeUpdateActions {
let mut actions = NodeUpdateActions::new();
actions.should_schedule_update = pacemaker_actions.should_schedule_update;
actions.should_broadcast = pacemaker_actions.should_broadcast;
actions.should_notify_leader = pacemaker_actions.should_notify_leader;
if let Some(round) = pacemaker_actions.should_create_timeout {

self.record_store.create_timeout(self.local_author, round, smr_context);
}
if let Some(previous_qc_hash) = pacemaker_actions.should_propose_block {

self.record_store.propose_block(
self.local_author,
previous_qc_hash,
self.latest_broadcast,
smr_context,

);
}
actions

}
}

7.4. Equivalence of Quorum Certificates

To define leaders and maximum durations rigorously, including at the beginning of an epoch, we must
take some precautions and introduce the notion of QC equivalence.

Two QC hashes ℎ and ℎ′ are said to be equivalent, noted ℎ ≈ ℎ′, if and only if one of the two
conditions is fulfilled:

1) ℎ = ℎ′; or

2) There exist two quorum certificates 𝐶 and 𝐶′ and a block 𝐵, such as ℎ = hash(𝐶), ℎ′ =
hash(𝐶′), 𝐵 ← 𝐶, 𝐵 ← 𝐶′, and state(𝐶) = state(𝐶′).

The first condition matters only for initial hashes. In the second case, we say that the quorum
certificates 𝐶 and 𝐶′ are equivalent and write 𝐶 ≈ 𝐶′.

The reason behind this definition is that a block may be known to have a valid QC, for example,
𝐵0 ← 𝐶0, but consensus nodes may temporarily disagree on 𝐶0. Indeed, although we required 𝐶0
to be signed by the author of 𝐵0, a dishonest proposer could select and aggregate votes in different
ways and broadcast several variants of 𝐶0. We have seen that under BFT assumption, all variants
must be equivalent (Lemma S2) in the sense defined above.

Notations: In the following, we will ℎ𝑐 for the hash of the QC of the latest committed block, if any;
otherwise, the initial hash of the epoch. We will require that formulas for leaders and maximum
durations depend on ℎ𝑐 up to equivalence — they may depend on the state and the committed block,
but not the voters.

When we use ℎ𝑐 as an input for a function, we will rely on the fact that a record store is available
locally to each node and can resolve the latest commit hash ℎ𝑐 into actual data.
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7.5. Prerequisite: Assigning Leaders to Rounds

Given a suitable record store, a QC hash ℎ𝑐, and a round 𝑛, we assume an algorithm leader(ℎ𝑐, 𝑛)
that returns an author in a fair way, meaning that all sequences of 𝑘 authors (𝑘 > 0) are equally
frequent. As explained above (Section 7.4), we also require that ℎ𝑐 ≈ ℎ′

𝑐 implies leader(ℎ𝑐, 𝑛) =
leader(ℎ′

𝑐, 𝑛).
Assuming equal voting rights, the simplest approach is to let leader(ℎ𝑐, 𝑛) = author(hash(𝑛)
mod 𝑁), where 𝑁 is the number of nodes. However, this lets anyone predict leaders for a long
time in advance. This is problematic as it facilitates the preparation of targeted attacks on leaders.

We also note that depending on ℎ𝑐 in a naive way is not possible because of grinding attacks — a
leader at round 𝑛 could try to select transactions, or votes, so that leader(ℎ𝑐, 𝑛′) (𝑛′ > 𝑛+2) points
to a particular node once 𝑛 = round(ℎ𝑐).
To mitigate both risks, we intend to use a verifiable random function (VRF) [36] in the future. If the
certified block under the QC hash ℎ𝑐 contains some seed 𝑠 = VRFauthor(ℎ𝑐)(epoch_id || round(ℎ𝑐)),
then we may define leader(ℎ𝑐, 𝑛) = author(PRF𝑠(𝑛) mod 𝑁) where PRF stands for the implementa-
tion of a pseudo-random function.

7.6. Prerequisite: Minimum Broadcast Interval

We assume a time delay 𝐼 > 0 fixed as part of the protocol. The shorter the delay, the more responsive
to a newly synchronous network we will be.

7.7. Prerequisite: Delay Coefficients

We assume that every node can compute some values Δ(ℎ𝑐) > 0 and 𝛾(ℎ𝑐) > 0 in function of available
data in the chain of records ending with the QC hash ℎ𝑐.

• Δ(ℎ𝑐) represents the amount of time available for the first block proposer on top of ℎ𝑐.
• 𝛾(ℎ𝑐) is the exponent used to increase the time for subsequent proposers.
• As before, we assume that ℎ𝑐 ≈ ℎ′

𝑐 implies Δ(ℎ𝑐) = Δ(ℎ′
𝑐) and 𝛾(ℎ𝑐) = 𝛾(ℎ′

𝑐).

As far as theoretical liveness is concerned, those values could be fixed: Δ(ℎ𝑐) = Δ0 > 0 and 𝛾(ℎ𝑐) = 2.
However, we expect practical performance to depend on more meaningful values.

7.8. Assigning Durations to Rounds

Assume a latest commit QC hash ℎ𝑐 at round 𝑛𝑐. Let us write Δ = Δ(ℎ𝑐) and 𝛾 = 𝛾(ℎ𝑐) > 0 for the
constants mentioned previously.

We define a sequence of maximum duration for each 𝑛 > 𝑛𝑐 + 2:

duration(ℎ𝑐, 𝑛) = Δ ⋅ (𝑛 − 𝑛𝑐 − 2)𝛾

We make the following observations:

• For the first round after the commit rule, duration(ℎ𝑐, 𝑛𝑐 + 3) = Δ.
• Since as Δ > 0 and 𝛾 > 0, when 𝑛 grows, duration(ℎ𝑐, 𝑛) keeps increasing and is not bounded.
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7.9. Pacemaker State

We may now complete the specifications of the pacemaker state:
struct PacemakerState {

/// Active round
active_round: Round,
/// Leader of the active round
active_leader: Option<Author>,
/// Time at which we entered the round
active_round_start: NodeTime,
/// Nodes known to have switched to the same active round
active_nodes: HashSet<Author>,
/// Maximal time allowed between two broadcasts.
broadcast_interval: Duration,
/// Maximal duration of the first round after a commit rule.
delta: Duration,
/// Exponent to increase round durations.
gamma: f64,

}

7.10. Pacemaker Update Handler

We now describe the implementation of the pacemaker update function seen in Section 7.3 using Rust
(Table 3).

The algorithm computes a set of actions to be interpreted by the node as follows:

• After initializing actions with default values, the current active round active_round(𝛼) is set
to 𝑘 + 1, where 𝑘 is the maximum value between:

– The highest round of a quorum certificate (QC) in record_store(𝛼), if any;
– The highest round of a timeout certificate (TC) in record_store(𝛼), if any; and
– 0 = round(ℎinit).

• The current active leader active_leader(𝛼) is set to leader(ℎ𝑐, active_round(𝛼)).
• If active_round(𝛼) was just changed above:

– Start a timer to track the duration of the round;
– Reset the list of active nodes, defined as the set of nodes which have communicated to us

that they shared the same active round as us (this is only useful if we are the leader of
this round) and

– Request that the node notify the new leader active_leader(𝛼) to be counted as an active
node.

• If the round of the latest_senders argument is the current active round active_round(𝛼),
then we add the corresponding author to the set of active nodes.

• If active_leader(𝛼) points to local_author(𝛼) and the set of active nodes form a quorum,
then request that the node fetch a command and propose a block. Also, force a re-evaluation
of the main handler so that we vote on our proposal immediately.

• If we have not broadcast in an interval of time 𝐼 , request a new broadcast.
• If this active round has exceeded its maximal duration and we have not created a timeout yet,

then request the creation of a timeout at round active_round(𝛼) and request a broadcast.
• Finally, reschedule a run of the main handler (hence this function) to a time where we may

have to broadcast or create a timeout.
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fn update_pacemaker(
&mut self,
local_author: Author,
record_store: &RecordStore,
mut latest_broadcast: NodeTime,
latest_senders: Vec<(Author, Round)>,
clock: NodeTime,

) -> PacemakerUpdateActions {
// Initialize actions with default values.
let mut actions = PacemakerUpdateActions::new();
// Recompute the active round.
let active_round = std::cmp::max(

record_store.highest_quorum_certificate_round(),
record_store.highest_timeout_certificate_round(),

) + 1;
// If the active round was just updated..
if active_round > self.active_round {

// .. store the new value
self.active_round = active_round;
// .. start a timer
self.active_round_start = clock;
// .. recompute the leader
self.active_leader = Some(Self::leader(record_store, active_round));
// .. reset the set of nodes known to have entered this round (useful for leaders).
self.active_nodes = HashSet::new();
// .. notify the leader to be counted as an "active node".
actions.should_notify_leader = self.active_leader;

}
// Update the set of "active nodes", i.e. received synchronizations at the same active round.
for (author, round) in latest_senders {

if round == active_round {
self.active_nodes.insert(author);

}
}
// If we are the leader and have seen a quorum of active node..
if self.active_leader == Some(local_author)

&& record_store.is_quorum(&self.active_nodes)
&& record_store.proposed_block(&*self) == None

{
// .. propose a block on top of the highest QC that we know.
actions.should_propose_block =

Some(record_store.highest_quorum_certificate_hash().clone());
// .. force an immediate update to vote on our own proposal.
actions.should_schedule_update = Some(clock);

}
// Enforce sufficiently frequent broadcasts.
if clock >= latest_broadcast + self.broadcast_interval {

actions.should_broadcast = true;
latest_broadcast = clock;

}
// If we have not yet, create a timeout after the maximal duration for rounds.
let deadline = if record_store.has_timeout(local_author, active_round) {

NodeTime::never()
} else {

self.active_round_start + self.duration(record_store, active_round)
};
if clock >= deadline {

actions.should_create_timeout = Some(active_round);
actions.should_broadcast = true;

}
// Make sure this update function is run again soon enough.
actions.should_schedule_update = Some(std::cmp::min(

actions.should_schedule_update.unwrap_or(NodeTime::never()),
std::cmp::min(latest_broadcast + self.broadcast_interval, deadline),

));
actions

}

Table 3: Update function of the pacemaker
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7.11. Resharing and Cleaning Records

We have sketched the requirements for the data-synchronization protocol between nodes in a previous
section (Section 4.4). We are now making more precise the minimal amount of data that must be
exchanged during an instance of data synchronization.

Whenever a node 𝛼 synchronizes with an honest sender 𝛼0, we expect the following properties to
hold:

(sync-epoch) The current epoch of 𝛼 after synchronization is at least as recent as the
one of 𝛼0. (Then, assuming that 𝛼 and 𝛼0 agree on the most recent epoch:)

(sync-commits) The highest commit known to 𝛼 after synchronization is at least as
high as the one of 𝛼0.

(sync-QCs) The highest QC known to 𝛼 after synchronization is at least as high as the
one of 𝛼0.

(sync-TCs) If 𝛼0 knows a TC at a higher round than the highest QC of 𝛼, then the
highest TC known to 𝛼 after synchronization is at least as high as the highest TC of 𝛼0.

(sync-vote) If 𝛼0 just voted for a block proposed by 𝛼, then 𝛼 receives this vote; no
other votes are sent by 𝛼0.

(sync-timeouts) If 𝛼0 knows timeouts at its current active round, then 𝛼 receives these
timeouts.

(sync-block) If 𝛼0 knows one block proposed by the current leader of its current active
round, then 𝛼 receives this block and learns the chain of previous blocks and QCs.

Regarding the last item, note that honest leaders are expected to propose only one block, so we can
stop gossiping conflicting proposals.

Regarding the property (sync-epoch), the data-synchronization exchange between the two nodes may
utilize the past record stores of 𝛼0 (Section 5.6) so that 𝛼 can follow the chains of commits and the
commit rules of all the necessary epochs.

A solution for data synchronization is described in Appendix A.3.

Record cleanups. The requirements above condition which data can be cleaned from the record store
of receiving nodes after an update.

• We define the current round of the record store to be one plus the round of the highest QC or
TC in the store.1

• In terms of QCs and blocks with QCs, the record store only needs to keep the two chains ending
with the highest QC and the last QC of the latest commit rule.

• In terms of blocks without QCs, only one proposal at the current round is needed.
• In terms of votes, if we just proposed a block at the current round, only the votes at the current

round are needed; otherwise, only one vote authored by us at the current round is needed.
• In terms of timeouts, only the timeouts at the current active round are needed, together with

one set of timeouts that form a TC at the current round minus one, if any such TC exists.

1 Technically, the current round of the record store only becomes the active round of the node after the main handler
is called and update_pacemaker has started its timer.
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Data tracker. The requirements above also translate into the following specifications for the data-
tracker abstraction that was used previously in the main handler update_node to control resharing
(Section 5.7).
struct DataTracker {

/// Latest epoch identifier that was processed.
epoch_id: EpochId,
/// Round of the latest commit that was processed.
highest_committed_round: Round,
/// Round of the latest highest QC that was processed.
highest_quorum_certificate_round: Round,
/// Latest current round of the record store that was processed.
current_round: Round,
/// Number of timeouts in the current round.
num_current_timeouts: usize,

}

impl DataTracker {
fn update_and_decide_resharing(&mut self, epoch_id: EpochId, record_store: &RecordStore) -> bool {

let mut should_broadcast = false;
if epoch_id != self.epoch_id {

self.epoch_id = epoch_id;
self.highest_committed_round = Round(0);
self.highest_quorum_certificate_round = Round(0);
self.current_round = Round(1);
self.num_current_timeouts = 0;
should_broadcast = true;

}
let highest_committed_round = record_store.highest_committed_round();
if highest_committed_round > self.highest_committed_round {

self.highest_committed_round = highest_committed_round;
should_broadcast = true;

}
let highest_quorum_certificate_round = record_store.highest_quorum_certificate_round();
if highest_quorum_certificate_round > self.highest_quorum_certificate_round {

self.highest_quorum_certificate_round = highest_quorum_certificate_round;
should_broadcast = true;

}
let current_round = record_store.current_round();
if current_round > self.current_round {

self.current_round = current_round;
self.num_current_timeouts = 0;
should_broadcast = true;

} else {
let num_current_timeouts = record_store.num_current_timeouts();
if num_current_timeouts > self.num_current_timeouts {

self.num_current_timeouts = num_current_timeouts;
should_broadcast = true;

}
}
should_broadcast

}
}

8. Proof of Liveness

We now consider the liveness of the LibraBFT protocol. We argue that the liveness mechanisms
described in Section 7 ensure that commits are being produced in a timely manner whenever the
network becomes synchronous.

Without loss of generality, we assume that the current epoch continues indefinitely. We will also
rely on the fact that after GST, network and nodes are responsive; hence, we only take into account
network propagation delays.

Note that we address only the question of chain growth. How committed transactions are picked —
aka fairness — is left for future work (see previous note in Section 3.3).
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8.1. Active Rounds

In the following, we use maximal active round to refer to the maximal active round between honest
nodes. Recall that the set of honest nodes is unknown to the participants, yet stays the same during
an epoch.

Next, we prove that active rounds are always increasing over time or when nodes synchronize with
each other.

Lemma L1: If a node changes its active round from 𝑛 to 𝑛′, then 𝑛 < 𝑛′.

Proof: By construction, discarding records (Section 5.7) never decreases the rounds of the high-
est QC and TC in the record store of a node. Therefore, given the definition of the method up-
date_pacemaker (Section 7.10), any change in the active round must result from a higher QC or a
higher TC. □

Lemma L2: If a node 𝛼 has synchronized with a node of active round 𝑛 in the past, then the active
round of 𝛼 is at least 𝑛.

Proof: This is a consequence of Lemma L1 and the properties of data synchronization (sync-QCs)
and (sync-TCs). □

Lemma L3: Assume that the maximal active round amongst honest nodes changes from 𝑛 to 𝑛′,
then 𝑛′ = 𝑛 + 1.

Proof: We have seen with Lemma L1 that the maximal active round cannot decrease. While the
maximal active round is 𝑛, honest nodes can only vote for blocks or sign timeout objects at round
lower or equal than 𝑛. The voting power necessary to produce a QC or a TC requires at least one
honest node to collaborate; therefore, no QC or TC at asm_1’ round greater than 𝑛 can be produced.
Given the definition of the method update_pacemaker (Section 7.10), this implies 𝑛′ ≤ 𝑛 + 1. □

Note:

• Since active rounds do not decrease by Lemma L1, the definition of the method proposed_block
used by the main handler (Section 7.3) implies that the first voting constraint (Section 5.4) is
always fulfilled the first time that a node wishes to vote on a proposal at a given round.

• The fact that maximal active round increases sequentially is very important for the liveness
argument. In particular, given that leaders are predictable until a new commit is produced,
after GST, we must not allow malicious nodes and the network to cause a round to be skipped.

• Assuming that nodes agree on the latest commit hash ℎ𝑐, a similar argument as in the proof
of Lemma L3 shows that the maximal active round 𝑛 will stay the same for at least a time
duration(ℎ𝑐, 𝑛) unless a new commit is produced or the leader at round 𝑛 successfully produces
a QC sooner.

8.2. Synchronization of Active Rounds

In the previous section, we discussed necessary conditions for the maximal active round to change.
We now aim at sufficient conditions for the minimal active round between honest nodes to increase.

Note that by Lemma L1, the minimal active round never decreases.

Let 𝛿𝐺 be the time taken by a full gossip-based broadcast after GST. Assuming that the current
minimal active round is 𝑛, we say that the system is synchronized if the following two conditions
hold:

30



(i) Every honest node with an active round equal to 𝑛 has initiated a broadcast, including its
timeout object at round 𝑛, at least once after GST (if any such timeout exists).

(ii) Every honest node with an active round greater than 𝑛 (if any such node exists) entered its
active round less than 𝛿𝐺 time ago.

Note that the last condition can be stated formally as a function on the current states by using the
timers in active rounds.

Lemma L4: If an honest node 𝛼 is first to switch to a new maximal active round 𝑛 + 1 at time
𝑡 > 𝐺𝑆𝑇 , then at time 𝑡+𝛿𝐺, the system is synchronized with a minimal active round at least 𝑛+1.

Proof: Given the definition of the method update_pacemaker (Section 7.10), 𝛼 switches round
because it learned a QC or a TC at round 𝑛. According to the protocol (Section 5.7), this QC
or TC was gossiped immediately by 𝛼. Since 𝛼 is first in the round, other honest nodes will fully
propagate this QC or TC (or any higher one that might be produced in the meantime); therefore,
the assumption on broadcasting after GST applies. By Lemma L2, at time 𝑡 + 𝛿𝐺, all honest nodes
will have entered an active round greater than 𝑛, less than 𝛿𝐺 time ago. Note that no timeout at
round greater than 𝑛 could be created before GST, thus condition (i) holds as well and the system is
synchronized. □

Note: Assuming that nodes agree on the latest commit hash ℎ𝑐 and that duration(ℎ𝑐, 𝑛) ≥ 𝛿𝐺, in
the condition of Lemma L4, all honest nodes will switch exactly to the round 𝑛 + 1 between time 𝑡
and 𝑡 + 𝛿𝐺, unless a new commit is produced or the leader at round 𝑛 + 1 successfully produces a QC
before 𝑡 + 𝛿𝐺.

We can now show that system synchronization persists after GST.

Proposition L5: If the system is synchronized at time 𝑡 > 𝐺𝑆𝑇 + 𝛿𝐺, then it stays synchronized at
later times 𝑡′ > 𝑡.
Proof: Condition (i) is clearly propagated for old timeouts and true for new ones.

We prove (ii) by contradiction. Let 𝑡′ > 𝑡 be the earliest time at which the system is no longer
synchronized. Let 𝑛0 be the minimal active round at time 𝑡′. By assumption, there exist nodes with
an active round 𝑛 > 𝑛0 that switched their active rounds no less than 𝛿𝐺 ago. Let 𝛼 be the node
that switched first to the greatest active round 𝑛1 > 𝑛0 amongst those nodes. Since 𝑡′ is the earliest
time of desynchronization, and the minimal active round never decreases, 𝛼 switched to 𝑛1 exactly
at time 𝑡′ − 𝛿𝐺. Besides, 𝑛1 was the maximal active round at time 𝑡′ − 𝛿𝐺. Since 𝛼 was the first to
switch and 𝑡′ − 𝛿𝐺 > 𝐺𝑆𝑇 , Lemma L2 applies and shows that the system is synchronized at time 𝑡′.
□

Lemma L6: If the maximal active round between honest nodes is 𝑛 at time 𝑡 > 𝐺𝑆𝑇 , then the
system is synchronized at time 𝑡 + 𝐼 + 𝛿𝐺, with a minimal active round at least 𝑛.

Proof: Condition (i) follows from the mechanism of regular broadcasts (Section 7.6) with inter-
val 𝐼 .

The same mechanism also entails that every node 𝛼 that has the maximal active round 𝑛 at time
𝑡 will initiate a broadcast no later than time 𝑡 + 𝐼 . This broadcast will gossip a QC or TC that
justifies the active round 𝑛 or any later round learned in the meantime. Given Lemma L2 and the
assumption on reliable broadcast after GST, every honest node will have an active round at least 𝑛
by time 𝑡 + 𝐼 + 𝛿𝐺.

Let 𝑛′ ≥ 𝑛 be the minimal active round at time 𝑡 + 𝐼 + 𝛿𝐺. We prove Condition (ii) by contradiction:
assume that there exists a node with an active round 𝑛″ > 𝑛′ and that this node switched to 𝑛″ on
or before time 𝑡 + 𝐼 . Since 𝑛″ > 𝑛, any such node must have switched after 𝑡 > 𝐺𝑆𝑇 . By considering
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the first node to switch to a new maximal active round, Lemma L4 and Proposition L5 imply that
the system is synchronized at time 𝑡 + 𝐼 + 𝛿𝐺. □

Proposition L7: Assume that the highest commit hash ℎ𝑐 is shared between honest nodes and stays
the same. If the system is synchronized with a minimal active round at least 𝑛 at time 𝑡 > 𝐺𝑆𝑇 +𝛿𝐺,
then it is synchronized with a minimal active round at least 𝑛+1 at time 𝑡+2𝛿𝐺 +duration(ℎ𝑐, 𝑛).
Proof: If all honest nodes have an active round greater than 𝑛 at time 𝑡, then the result follows
from Lemma L1.

Otherwise, let us assume that the minimal active round at time 𝑡 is exactly 𝑛. If some honest nodes
have an active round greater than 𝑛 at time 𝑡, then, by condition (ii), they must have switched less
than 𝛿𝐺 time ago. Since 𝑡 − 𝛿𝐺 > 𝐺𝑆𝑇 , we can conclude by Lemma L4 and Proposition L5 as
before.

Otherwise, every honest node has an active round equal to 𝑛 at time 𝑡. By time 𝑡 + duration(ℎ𝑐, 𝑛),
each honest node will have created a timeout object for round 𝑛. This timeout object may be created
before (or at) time 𝑡, or after time 𝑡. Given condition (i) of synchronized systems, timeout objects that
existed already at time 𝑡 were already broadcast at least once after GST. Timeout objects created
after 𝑡 are also broadcast immediately by definition of the pacemaker. Given the assumption on
gossiping delay after GST, by time 𝑡 + 𝛿𝐺 + duration(ℎ𝑐, 𝑛), one honest node will first learn enough
old and new timeouts to form a TC at round 𝑛, thus switching to the next active round 𝑛 + 1. We
then conclude by Lemma L4 and Proposition L5. □

8.3. Optimistic Responsiveness

Following the authors of the original HotStuff [5], we prove an important property for the liveness of
the protocol called “Optimistic Responsiveness.”

Proposition L8 (Optimistic Responsiveness): Assume that a quorum of nodes (𝛼) communi-
cated their highest 1-chains to a proposer at times (𝑡𝛼). Let 𝐵 ← 𝐶 be the highest 1-chain amongst
all those communicated. If such a node 𝛼 is honest, we further assume that it has not voted on
any proposal since 𝑡𝛼. Then, under BFT assumption, any proposal 𝐵′ such that 𝐵 ← 𝐶 ← 𝐵′ is
compatible with the voting rule (locked-round) of any honest node.

Proof: Let 𝑛0 be the current locked round of an honest node 𝛼0. By definition of the locked round,
𝛼0 once knew a 2-chain 𝐵0 ← 𝐶0 ← 𝐵1 ← 𝐶1 such that round(𝐵0) = 𝑛0. Under BFT assumption,
there exists an honest node 𝛼 that voted for 𝐵1 a time 𝑡0 and communicated its highest 1-chain at time
𝑡𝛼. Since 𝛼 has not voted since 𝑡𝛼, we have 𝑡0 ≤ 𝑡𝛼. At time 𝑡0, 𝛼 knew the 1-chain 𝐵0 ← 𝐶0. Since
its highest 1-chain at later time 𝑡𝛼 is not higher than 𝐵 and the round of the highest 1-chain in the
record store of node never decreases (see record cleanups in Section 7.11), we deduce 𝑛0 ≤ round(𝐵).
Therefore, 𝛼0 can vote for 𝐵′ according to the voting rule (locked-round). □

8.4. Main Proof

Let 𝛿𝑀 be the transmission delay for one message after GST.

Theorem L9 (Liveness): Let ℎ𝑐 be the highest commit QC hash known to honest nodes at a
time 𝑡0 > 𝐺𝑆𝑇 . Let 𝑡1 = 𝑡0 + 𝐼 + 𝛿𝐺 and 𝑛1 be the maximal active round at time 𝑡1. Let 𝑛 ≥ 𝑛1
be such that leader(ℎ𝑐, 𝑛), leader(ℎ𝑐, 𝑛 + 1), and leader(ℎ𝑐, 𝑛 + 2) are honest and such that
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duration(ℎ𝑐, 𝑛) ≥ 2 𝛿𝑀 + 2 𝛿𝐺. Then, the next commit after ℎ𝑐 is received by every node no later
than time:

𝑡 = 𝑡0 + 𝐼 + (2 𝑛 − 2 𝑛1 + 3) 𝛿𝐺 +
𝑛+2
∑

𝑘=𝑛1

duration(ℎ𝑐, 𝑘)

Proof: If the highest commit hash ℎ𝑐 known to honest nodes changes before time 𝑡 − 𝛿𝐺, then
given that 𝑡 − 𝛿𝐺 ≥ 𝐺𝑆𝑇 , the assumption on gossiping after GST implies the next commit after ℎ𝑐
is received by every node no later than time 𝑡.
By contradiction, assume that ℎ𝑐 does not change before 𝑡 − 𝛿𝐺. Given the regular broadcasts (Sec-
tion 7.6) and the properties of data synchronization (sync-commits), at time 𝑡1 = 𝑡0 + 𝐼 + 𝛿𝐺, all
honest nodes have the same highest commit QC hash ℎ𝑐. From then on and until time 𝑡 − 𝛿𝐺, this
means every honest node agrees on the leader and the duration of each round. By Lemma L6 and
Proposition L5, the system is also synchronized on and after time 𝑡1. By the assumption on gos-
siping after GST and condition (ii) of synchronization at time 𝑡1, the minimal active round at time
𝑡2 = 𝑡1 + 𝛿𝐺 is at least 𝑛1.

By Lemma L3, the maximal active rounds on and after 𝑡2 follow the sequence of values 𝑛1, 𝑛1 + 1,
𝑛1 + 2, etc. Using the minimal active round as a lower bound for the maximal active round, by
Lemma L4 and Proposition L7, and given that duration(ℎ𝑐, 𝑛) > 𝛿𝐺, we deduce that there exists a
time 𝑡3 with 𝑡3 ≤ 𝑡2 + 2 (𝑛 − 𝑛1) 𝛿𝐺 + ∑𝑛−1

𝑘=𝑛1
duration(ℎ𝑐, 𝑘) such that all honest nodes switch to

round 𝑛 between 𝑡3 and 𝑡3 + 𝛿𝐺. By definition of the pacemaker, these nodes immediately notifies
the leader of round 𝑛.

Given that duration(ℎ𝑐, 𝑛) ≥ 2 𝛿𝑀 + 2 𝛿𝐺, no honest node will timeout and all of them will stay at
active round 𝑛 until the leader at round 𝑛 has completed its expected tasks:

• Receive the synchronizations from a quorum of nodes (time cost ≤ 𝛿𝑀);
• Pick a valid block compatible with voting rules (see Proposition L8 on optimistic responsive-

ness);
• Broadcast it (time cost ≤ 𝛿𝐺);
• Gather a quorum of votes (time cost ≤ 𝛿𝑀); and
• Broadcast its QC (time cost ≤ 𝛿𝐺).

Recall that 2 𝛿𝑀 + 2 𝛿𝐺 ≤ duration(ℎ𝑐, 𝑛) ≤ duration(ℎ𝑐, 𝑛 + 1) ≤ duration(ℎ𝑐, 𝑛 + 2). Therefore,
the same reasoning applies to the next leaders at round 𝑛 + 1 and 𝑛 + 2. This means that all honest
nodes will receive three QCs at contiguous rounds 𝑛, 𝑛 + 1, and 𝑛 + 2 – hence a commit, before time
𝑡4 = 𝑡3 + 𝛿𝐺 + ∑𝑛+2

𝑘=𝑛 duration(ℎ𝑐, 𝑘).
Using previous equations, we have:

𝑡4 ≤ 𝑡0 + 𝐼 + 2 𝛿𝐺 + 2 (𝑛 − 𝑛1) 𝛿𝐺 +
𝑛−1
∑

𝑘=𝑛1

duration(ℎ𝑐, 𝑘) + 𝛿𝐺 +
𝑛+2
∑
𝑘=𝑛

duration(ℎ𝑐, 𝑘) = 𝑡

□

Note: For subsequent commits after GST, we may assume that the system is already synchronized
and that the highest commit known to honest nodes was just broadcast at time 𝑡0 > 𝐺𝑆𝑇 . In this
case, a similar proof shows that we can spare the term 𝐼 . Specifically, the next commit will be received
no later than 𝑡′ = 𝑡0 + (2𝑛′ − 2𝑛′

1 + 3) 𝛿𝐺 + ∑𝑛′+2
𝑘=𝑛′

1
duration(ℎ𝑐, 𝑘) when 𝑛′ is defined as 𝑛 above,

but based on the highest QC round 𝑛′
1 at time 𝑡′

1 = 𝑡0 + 𝛿𝐺.
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9. Economic Incentives

Finally, we sketch how to economically incentivize LibraBFT nodes for their behaviors in the con-
sensus protocol. Specifically, we show how to reward timely leaders and voters and how to detect
violations of voting constraints and conflicting proposals. This covers the essential behaviors of
participants. In the future, we intend to study how to cover more behaviors, such as timeouts.

The execution of rewards and punishments is meant to be entirely delegated to the execution module
of the Libra Blockchain and programmed using the Move language [35]. Rewards are handled by
adding consensus-provided arguments to the execution callbacks. We sketch possible SMR APIs
in Appendix A.1.

In the case of punishments, we will rely on a whistleblower node to detect a violation, gather crypto-
graphic evidence (see the conditions given below), and submit a punishment request through consensus.
We leave for future work the exact specifications of the corresponding interactions between mempool,
execution, and consensus.

9.1. Leaders and Voters

Assume a proposal 𝐵 on top of a quorum certificate 𝐶0, that is, 𝐵0 ← 𝐶0 ← 𝐵. Thanks to
cryptographic chaining, during the execution of the block 𝐵, we may introspect 𝐵0 and 𝐶0 to suggest
rewards for the author of 𝐵0 and the authors of the votes included in the quorum certificate 𝐶0.

APIs to communicate lists of authors and voters to the execution are proposed in Appendix A.1. We
emphasize that rewards concerning 𝐵0 are computed as part of the speculative execution of some
next block 𝐵. They become final when 𝐵 is committed.

Note that we cannot so easily punish unsuccessful leaders leader(ℎ𝑐, 𝑛) for round(𝐵0) < 𝑛 <
round(𝐵) because there may not be agreement between consensus nodes on ℎ𝑐, the latest commit
preceding 𝐵0.

9.2. Detecting Safety Violations

Looking at the proof of Proposition S4, we notice that the proof of safety relies only on Lemma S2
and Lemma S3.

Interestingly, these two lemmas are merely properties of the tree of records. Therefore, we can
translate them into the following conditions to prove that a node 𝛼 is trying to break safety:

(conflicting-votes) There exist two votes, 𝐵1 ← 𝑉1 and 𝐵2 ← 𝑉2, such that
round(𝐵1) = round(𝐵2), author(𝑉1) = author(𝑉2) = 𝛼, and either 𝐵1 ≠ 𝐵2 or
state(𝑉1) ≠ state(𝑉2).

(locked-round-violation) There exist a vote following a 2-chain 𝐵0 ← 𝐶0 ← 𝐵1 ←
𝐶1 ← 𝐵2 ← 𝑉2 and a vote 𝐵 ← 𝑉 , such that author(𝑉2) = author(𝑉 ) = 𝛼, round(𝐵) >
round(𝐵2), and previous_round(𝐵) < round(𝐵0).

Proposition E1 (Safe detection): A node that respects the voting rules (increasing-round) and
(locked-round) never triggers the conditions (conflicting-votes) and (locked-round-violation).

Proof: This was proved as part of the proofs of Lemma S2 and Lemma S3, respectively. □

Proposition E2 (Complete detection): If no more than 𝑓 nodes ever triggered the conditions
(conflicting-votes) and (locked-round-violation), then safety holds.
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Proof: As mentioned above, the proofs of Proposition S4, or safety, rely only on Lemma S2 and
Lemma S3. We prove these lemmas under the new assumption by considering a non-violating node
(instead of an honest node) at the intersection of the two QCs mentioned at the beginning of the
original proofs. □

9.3. Detecting Conflicting Proposals

According to the protocol, the leader of a round should make only one proposal. Making several
proposals does not endanger safety, but it makes other nodes consume more resources than needed
(e.g., CPU, network). This undesirable behavior is easy to detect:

(conflicting-proposals) There exist two proposals 𝐵1 and 𝐵2 such that round(𝐵1) =
round(𝐵2), 𝐵1 ≠ 𝐵2, and author(𝐵1) = author(𝐵2) = 𝛼.

10. Conclusion

We have presented LibraBFT, a state machine replication system based on the HotStuff protocol [5]
and designed for the Libra Blockchain [2]. LibraBFT provides safety and liveness in a Byzantine
setting when up to one-third of voting rights are held by malicious actors, assuming that the network
is partially synchronous. In this report, we have presented detailed proofs of safety and liveness and
covered many important practical considerations, such as networking and data structures. We have
shown that LibraBFT is compatible with proof of stake and can generate incentives for a variety of
behaviors, such as proposing blocks and voting. Thanks to the simplicity of the safety argument in
LibraBFT, we also provided criteria to detect malicious attempts to break safety. These criteria will
be instrumental for the progressive migration of the Libra infrastructure to a permissionless model.

Future work. This report constitutes an initial proposal for LibraBFT and is meant to be updated
in the future. In the next version, we intend to share the code for our reference implementation in
a simulated environment and provide experimental results, both using this simulation and using the
production implementation currently developed by Calibra engineers.

In the future, we would like to improve our theoretical analysis in several ways. We plan to make
our networking assumptions more precise, with additional studies on message sizes and probabilistic
gossiping. Regarding the integration of LibraBFT with the Libra Blockchain, we would like to cover
fairness and discuss how light clients can authenticate the set of validators for each epoch. Economic
incentives should reward additional positive behaviors, such as creating timeouts, and specifications
should provide an external protocol for auditors to report violations of safety rules.

On a practical level, we have not yet analyzed resource consumption (memory, CPU, etc.) in the
presence of malicious participants. Heuristics for leader selection, a precise description of the VRF
solution, and possibly adaptive policies will likely be required to increase the robustness of the system
in case of malicious leaders or targeted attacks on leaders.

In the long term, we hope that our efforts on precise specifications and detailed proofs will pave the
way for mechanized proofs of safety and liveness of LibraBFT.
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A. Programming Interfaces

Note: This section will evolve in the future as we integrate engineering optimizations and make
progress in the software implementation of LibraBFT.

A.1. State Machine Replication

We now present possible programming interfaces for state machine replication (Table 4).

We assume two abstract data types:

• Values of type State are authenticators that refer to a concrete execution state in the Libra
Blockchain.

• Command values are meant to be executed on top of a State value.

At the beginning of the first epoch, we assume that the SMR module of every node is initialized with
the same initial value of type State. As mentioned above (Section 3), in practice, State values are
likely to contain a hash value that points to a persistent state stored outside the SMR module.

SMR modules will communicate with the other modules of a Libra validator through a number of
APIs (i.e., Rust traits):

• CommandFetcher lets the SMR module fetch user commands from the mempool.
• StateComputer produces a new state hash from the hash of a base state, a command to execute,

and additional contextual data, including a proposed system time and signals for economic
incentives (Section 9).

• StateFinalizer lets the SMR module eventually declare whether each state hash was success-
fully committed or not. In the case of a commit, we pass the quorum certificate that contains
the corresponding commitment value, as discussed in Section 4.1.

• EpochReader lets the SMR module retrieve a possibly updated epoch identifier from a state, as
well as the current voting rights.

A.2. Record Store

The implementation of the record store is assumed to provide the APIs outlined in Table 5.

In the simulator used as a reference for this report, we implement the RecordStore APIs using the
in-memory data structures described in Table 6. Note that the data structures described here do not
cover constant-time cleanups, persistent storage, and resistance to potential crashes while the record
store is being updated.

A.3. Data-Synchronization Messages

The messages of the data-synchronization protocol (Section 4.6) used in our current simulator are
described in Table 7. For simplicity, we have assumed that data are transmitted over authenticated
channels, and omitted message signatures.
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trait CommandFetcher {
/// How to fetch valid commands to submit to the consensus protocol.
fn fetch(&mut self) -> Command;

}

trait StateComputer {
/// How to execute a command and obtain the next state.
/// If execution fails, the value `None` is returned, meaning that the
/// command should be rejected.
fn compute(

&mut self,
// The state before executing the command.
base_state: &State,
// Command to execute.
command: Command,
// Time associated to this execution step, in agreement with
// other consensus nodes.
time: NodeTime,
// Suggest to reward the author of the previous block, if any.
previous_author: Option<Author>,
// Suggest to reward the voters of the previous block, if any.
previous_voters: Vec<Author>,

) -> Option<State>;
}

/// How to communicate that a state was committed or discarded.
trait StateFinalizer {

/// Report that a state was committed.
fn commit(&mut self, state: &State, certificate: Option<&QuorumCertificate>);

/// Report that a state was discarded.
fn discard(&mut self, state: &State);

}

/// Hold voting rights for a give epoch.
struct EpochConfiguration {

voting_rights: BTreeMap<Author, usize>,
total_votes: usize,

}

/// How to communicate that a state was committed or discarded.
trait EpochReader {

/// Read the id of the epoch in a state.
fn read_epoch_id(&self, state: &State) -> EpochId;

/// Return the configuration (i.e. voting rights) for the current epoch.
fn configuration(&self) -> EpochConfiguration;

}

trait SMRContext: CommandFetcher + StateComputer + StateFinalizer + EpochReader {}

Table 4: Programming interfaces for State Machine Replication
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trait RecordStore {
/// Return the hash of a QC at the highest round, or the initial hash.
fn highest_quorum_certificate_hash(&self) -> QuorumCertificateHash;
/// Query the round of the highest QC.
fn highest_quorum_certificate_round(&self) -> Round;
/// Query the round of the highest TC.
fn highest_timeout_certificate_round(&self) -> Round;
/// Query the round of highest commit.
fn highest_committed_round(&self) -> Round;
/// Query the round of the highest 2-chain.
fn highest_2chain_head_round(&self) -> Round;

/// Current round as seen by the record store.
fn current_round(&self) -> Round;
/// Number of timeouts objects known at the current round.
fn num_current_timeouts(&self) -> usize;

/// Iterate on a chain of QCs starting after the QC at round `after_round` and ending with the QC at round
/// `until_round`
fn chain_between_quorum_certificates<'a>(

&'a self,
after_round: Round,
until_round: Round,

) -> ForwardQuorumCertificateIterator<'a>;
/// Find a QC whose `commitment` field is the state of the input QC.
fn commit_certificate(&self, qc: &QuorumCertificate) -> Option<&QuorumCertificate>;

/// Access the block proposed by the leader chosen by the Pacemaker (if any).
fn proposed_block(&self, pacemaker: &Pacemaker) -> Option<(BlockHash, Round, Author)>;
/// Check if a timeout already exists.
fn has_timeout(&self, author: Author, round: Round) -> bool;

/// Create a timeout.
fn create_timeout(&mut self, author: Author, round: Round, smr_context: &mut SMRContext);
/// Fetch a command from mempool and propose a block.
fn propose_block(

&mut self,
local_author: Author,
previous_qc_hash: QuorumCertificateHash,
clock: NodeTime,
smr_context: &mut SMRContext,

);
/// Execute the command contained in a block and vote for the resulting state.
/// Return false if the execution failed.
fn create_vote(

&mut self,
local_author: Author,
block_hash: BlockHash,
smr_context: &mut SMRContext,

) -> bool;
/// Try to create a QC for the last block that we have proposed.
fn check_for_new_quorum_certificate(

&mut self,
local_author: Author,
smr_context: &mut SMRContext,

) -> bool;

/// Compute the previous round of a block.
fn previous_round(&self, block_hash: BlockHash) -> Round;
/// Determine if a set of nodes form a quorum.
fn is_quorum(&self, authors: &HashSet<Author>) -> bool;
/// Pick an author based on a seed, with chances proportional to voting rights.
fn pick_author(&self, seed: u64) -> Author;

/// APIs supporting data-synchronization.
fn highest_commit_certificate(&self) -> Option<&QuorumCertificate>;
fn highest_quorum_certificate(&self) -> Option<&QuorumCertificate>;
fn timeouts(&self) -> Vec<Timeout>;
fn current_vote(&self, local_author: Author) -> Option<&Vote>;
fn block(&self, block_hash: BlockHash) -> Option<&Block>;
fn known_quorum_certificate_rounds(&self) -> BTreeSet<Round>;
fn verify_quorum_certificate_without_previous_block(&self, qc: &QuorumCertificate) -> Result<()>;
fn unknown_records(&self, known_qc_rounds: BTreeSet<Round>) -> Vec<Record>;
fn insert_network_record(&mut self, record: Record, smr_context: &mut SMRContext);

}

Table 5: Programming interfaces for the record store
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struct RecordStoreState {
/// Epoch initialization.
epoch_id: EpochId,
configuration: EpochConfiguration,
initial_hash: QuorumCertificateHash,
initial_state: State,
/// Storage of verified blocks and QCs.
blocks: HashMap<BlockHash, Block>,
quorum_certificates: HashMap<QuorumCertificateHash, QuorumCertificate>,
round_to_qc_hash: HashMap<Round, QuorumCertificateHash>,
current_proposed_block: Option<BlockHash>,
/// Computed round values.
highest_quorum_certificate_round: Round,
highest_timeout_certificate_round: Round,
current_round: Round,
highest_2chain_round: Round,
highest_committed_round: Round,
/// Storage of verified timeouts at the highest TC round.
highest_timeout_certificate: Option<Vec<Timeout>>,
/// Storage of verified votes and timeouts at the current round.
current_timeouts: HashMap<Author, Timeout>,
current_votes: HashMap<Author, Vote>,
/// Computed weight values.
current_timeouts_weight: usize,
current_election: ElectionState,

}

/// Counting votes for a proposed block and its execution state.
enum ElectionState {

Ongoing { ballot: HashMap<(BlockHash, State), usize> },
Won { block_hash: BlockHash, state: State },
Closed,

}

Table 6: In-memory data structures for the record store

struct DataSyncNotification {
/// Current epoch identifier.
current_epoch: EpochId,
/// Tail QC of the highest commit rule.
highest_commit_certificate: Option<QuorumCertificate>,
/// Highest QC.
highest_quorum_certificate: Option<QuorumCertificate>,
/// Timeouts in the highest TC, then at the current round, if any.
timeouts: Vec<Timeout>,
/// Sender's vote at the current round, if any (meant for the proposer).
current_vote: Option<Vote>,
/// Known proposed block at the current round, if any.
proposed_block: Option<Block>,
/// Active round of the sender's pacemaker.
active_round: Round,

}

struct DataSyncRequest {
/// Current epoch identifier.
current_epoch: EpochId,
/// Selection of rounds for which the receiver already knows a QC.
known_quorum_certificates: BTreeSet<Round>,

}

struct DataSyncResponse {
/// Current epoch identifier.
current_epoch: EpochId,
/// Records for the receiver to insert, for each epoch, in the given order.
records: Vec<(EpochId, Vec<Record>)>,
/// Active round of the sender's pacemaker.
active_round: Round,

}

Table 7: Data-synchronization messages
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