

Page 1 of 36

OpenVASP: An Open Protocol to Implement FATF’s

Travel Rule for Virtual Assets

David Riegelnig, Bitcoin Suisse

November 14, 2019

Summary

In June 2019, the Financial Action Task Force (FATF) issued updated guidance on “Virtual Assets and

Virtual Asset Service Providers” 1, providing additional clarifications on how its recommendations

should be understood in the context of virtual asset transactions. Implementation of the newest

recommendations is under way in some countries2, yet for most FATF members, awareness of the

requirement is still in the very early stages.

The FATF has been monitoring and providing guidance on money laundering and terrorism financing

prevention since 2014. In 2018, the international body adopted changes to its recommendations to

define “virtual assets” and introduced the term “virtual asset service provider” (VASP). Yet, the

implementation of some of the most recent guidance is a challenge for the still nascent crypto-financial

industry. Recommendation 16, often referred to as “Travel Rule”, presents particular challenges,

requiring industry participants to agree on common standards. It requires any VASP to obtain, hold,

and transmit originator and beneficiary information when conducting virtual asset transactions with

obliged entities as defined by the FATF (other VASPs, banks and financial intermediaries).

This white paper outlines an open protocol among VASPs for the mutual exchange of originator and

beneficiary information. It does so in a fully decentralized manner, leveraging cryptographically secure

peer-to-peer communication and capabilities of the Ethereum blockchain for authentication. The

protocol works with any blockchain or distributed ledger technology (DLT) used for the underlying

virtual asset transfer. It puts privacy of transferred data at the center of its design.

The protocol facilitates robust compliance, purely based on a set of principles for VASPs around the

world, regardless of jurisdiction or technology used and without membership or registration with a

centralized third-party. It is meant as a contribution to the ongoing dialogue of members of the crypto-

financial community and regulators around the globe.

1 http://www.fatf-gafi.org/publications/fatfrecommendations/documents/public-statement-virtual-assets.html

2 E.g. in Switzerland: Anti-Money Laundering Ordinance (AMLO-FINMA), issued by Swiss Financial Market Supervisory

Authority (FINMA), in particular Article 10; FINMA Guidance 02/2019 Payments on the blockchain

http://www.fatf-gafi.org/publications/fatfrecommendations/documents/public-statement-virtual-assets.html

Page 2 of 36

Contents

1 Overview .. 2

2 Design Principles .. 3

3 Messaging Layer ... 5

4 Addressing .. 7

5 Authentication .. 9

6 Protocol Flow .. 13

7 Protocol Messages ... 23

Page 3 of 36

1 Overview

Design Principles (Chapter 2)

An outline of the seven design principles guiding the protocol’s design.

Messaging Layer (Chapter 3)

Requirements are defined for the underlying asynchronous communication layer so that the protocol

can possibly be implemented on top of different existing messaging systems. The Whisper protocol is

introduced as an exemplary peer-to-peer messaging layer.

Addressing (Chapter 4)

Making sure the protocol works with any blockchain or distributed ledger system used for the

underlying virtual asset transfer, including upcoming Layer 2 solutions, a generic addressing and

routing system is required. We introduce the Virtual Assets Account Number (VAAN), which borrows

elements from proven payment routing systems (such as the IBAN), without compromising on the

decentralized approach.

Authentication (Chapter 5)

Robust end-to-end encryption requires strong mutual authentication between VASPs in the first place.

The protocol leverages the Ethereum blockchain as a public key infrastructure, avoiding the known

weaknesses of central certificate authorities. Mutual authentication between VASPs is at the center of

the protocol’s trust model, complemented by attestations from trusted third parties like self-regulatory

organizations and trade associations.

Protocol Flow (Chapter 6)

The protocol defines a simple flow of steps to facilitate a structured communication between two VASPs

transferring virtual assets on behalf of their respective customers.

Protocol Messages (Chapter 7)

A set of structured messages is specified, which borrows proven elements from modern payment

standards (i.e. ISO 20022), tailored for the specific needs arising for VASPs.

Page 4 of 36

2 Design Principles

In designing this proposal for an open protocol to facilitate compliance with FATF’s travel rule for

virtual assets, we were guided by the following seven principles.

2.1 Travel Rule Compliance

Establish a shared communication protocol for VASPs to exchange virtual asset transfer information

as specified in the FATF requirements.

This principle includes:

a) a common transfer data standard for required originator and beneficiary information;

b) a suitable set of rules to facilitate the data exchange between VASPs.

2.2 Decentralized Approach

Pursue a decentralized approach that enables any two VASPs to use the protocol without consent or

even knowledge of any third party.

This principle includes that the protocol:

a) does not require a VASP to obtain any form of membership or registration with any third party;

b) does not require the usage of a central component at any time;

c) assumes that each VASP has a non-delegable obligation to carefully select other VASPs it

wants to work with, following a risk-based approach.

2.3 Technology Agnostic

Make sure the protocol works with any blockchain or distributed ledger technology (DLT) used for

the underlying virtual asset transfer.

This principle includes that the protocol:

a) requires no changes to the underlying blockchain / DLT;

b) does not assume specific characteristics of the underlying blockchain / DLT (e.g. the existence

of a unique identifier or comment field in transactions).

2.4 Privacy by Design

Make sure the protocol puts privacy of transferred data at the center of its design.

This principle includes that the protocol:

a) requires robust authentication of the VASPs involved;

b) requires robust end-to-end encryption between VASPs;

c) applies perfect forward secrecy (protecting data transferred in the past against future

compromises of the private keys);

d) allows for two VASPs to transfer data without the knowledge of any third party.

Page 5 of 36

2.5 Broad Applicability

Ensure that the protocol facilitates all applicable usage scenarios where VASPs need to exchange

transfer data.

This principle includes that the protocol:

a) supports VASPs exchanging data as part of a one-off virtual asset transfer;

b) supports VASPs exchanging data for a high number of routine transactions;

c) supports situations where the beneficiary VASP is not known to the sending VASP or where

there is uncertainty whether a target address is controlled by a VASP;

d) supports situations where virtual asset transfers between VASPs are initiated or facilitated by

smart contracts.

2.6 Extensibility

Ensure that the protocol allows for custom extensions.

This principle includes that the protocol:

a) allows for VASPs to add custom data;

b) while doing so, has rules that prevent any weakening of the common core.

2.7 Efficient to Use

Ensure minimal cost for VASPs to deploy and maintain the protocol’s implementation.

This principle includes that the protocol:

a) supports straight-through processing capabilities;

b) supports implementations where a single server instance can process virtual asset transfers in

all blockchains / DLTs used by the VASP.

Page 6 of 36

3 Messaging Layer

3.1 Generic requirements

On the underlying communication layer, the protocol requires to send and receive asynchronous

messages in simple datagram format.

[Header, Data]

Header: Addressing information & reference for receiver how to decrypt the data (4 bytes)

Data: Encrypted message content

The proposed architecture does not assume a secure connection between sender and receiver and is

therefore not requiring the messaging layer to handle authentication. Instead, the protocol defines a

communication handshake based on structured messages, where the session key used for subsequent

encryption is generated.

Addressing is based on the VASP’s unique identity (for initial handshake) and the session (for

subsequent messages). Again, no specific requirements are imposed on the messaging layer, allowing

for different approaches how routing is implemented.

Details on addressing, session handling and message structure are described in further chapters.

3.2 Range of possible underlying messaging protocols

Given these minimal requirements, a wide range of underlying messaging protocols could be used,

which is helpful in supporting a wide range of usage scenarios.

To illustrate this, one could utilize standard unencrypted email to exchange protocol messages, simply

using the subject field for header information and the email body for data. Doing so is not very efficient

and would be vulnerable to traffic analysis, albeit only regarding the identity of the sender and the

receiver, but it would still work. Naturally, any other direct connection between sender and receiver

being able to exchange messages specified above can be used.

However, in line with its decentralized approach, the protocol is designed to work with a peer-to-peer

communication layer as well. In such a system, each node passes on every message it receives to some

(gossiping) or all (flooding) of its neighbors. Routing works because the receiving node can decide based

on the message header, whether he is the addressee and then try to decrypt the message data with his

private key or a previously agreed shared key.

Ideally, a set of initially supported messaging layers will be part of the final protocol specification,

following broader discussion with industry participants. For this paper, Whisper is taken as an

exemplary peer-to-peer protocol.

3.2 Ethereum Whisper as an example

The Whisper messaging system has been developed as part of the Ethereum technology stack but can

be used separately from the blockchain. It was designed to provide resilience and strong privacy in a

peer-to-peer environment and targets message delivery below five seconds on a global scale.

Given the design goals for the OpenVASP protocol, Whisper seems a good fit with its focus on secure,

untraceable communication between peers. It benefits from using Ethereum’s proven network layer

and is available for all to use. Adoption will be facilitated for VASPs already running Ethereum nodes.

The reader is recommended to consult the online documentation about the Whisper protocol

(https://geth.ethereum.org/whisper/Whisper-Overview). Hence, the following sections provide just a

brief overview about Whisper and its key functionality, partially citing from the mentioned source.

https://geth.ethereum.org/whisper/Whisper-Overview

Page 7 of 36

3.2.1 Functionality

3.2.1.1 Resilience and Privacy

Whisper has been designed as a peer-to-peer messaging system with focus on resilience and privacy.

As a matter of principle, a Whisper message is sent to every Whisper node and every message is

encrypted by default. The one who can decrypt the message, is the intended recipient. That way,

Whisper can ideally provide absolute anonymity for the recipient. However, nodes can choose their

level of anonymity by leaking limited information for better performance if so desired.

As each node passes on all incoming messages, neighboring nodes learn nothing about the origin of a

message. In addition, a node can send random messages to maintain a constant level of “noise”.

Therefore, Whisper protects the sender as well, even in case of a powerful adversary attempting to do

targeted traffic analysis.

3.2.1.2 Dark Routing

Decrypting every incoming message would put a too heavy strain on computational resources. For this

reason, Whisper messages include a 4-byte “topic”, which is a probabilistic hint for the recipient to

watch out for and to try to decrypt. The receiver can subscribe to several topics along with the

respective symmetric and asymmetric key.

The occurrence of collisions, meaning that a receiver attempts to decrypt a message with a matching

topic to find out it cannot be decrypted as it was for another receiver, are deliberate to ensure plausible

deniability.

3.2.1.3 Latency

It has been designed for message delivery below five seconds.

3.2.1.4 Time-to-live (TTL)

When sending a Whisper message, the sender decides on a time-to-live (specified in seconds) with a

maximum time span of two days. Messages are kept in every Whisper node until their TTL expires.

When a new node connects, it will receive all messages whose TTL has not yet expired. The Whisper

network is therefore storing a message for a specific time, which is useful in situations when a node

has a short downtime.

3.2.1.5 Protection from denial-of-service attacks

To protect the Whisper network from denial-of-service attacks, sending a message requires a proof-of-

work to be accepted by any forwarding node. The required proof-of-work is proportional to both message

size and TTL.

3.2.1.6 Encryption

Every Whisper message is encrypted either symmetrically or asymmetrically. Messages can be

decrypted by anyone who possesses the corresponding key.

Asymmetric encryption uses the standard Elliptic Curve Integrated Encryption Scheme with SECP-

256k1 public key. Symmetric encryption uses AES GCM algorithm with random 96-bit nonce.

Page 8 of 36

3.2.1.7 Underlying transport layer

Whisper is implemented on top of the RLPx, a TCP-based transport protocol also used for

communication among Ethereum nodes.

3.2.2 Whisper envelopes and messages

Envelopes are the packets sent and received by Whisper nodes. They contain the encrypted message

and metadata for decryption. Once decoded, they have the following format:

[Version, Expiry, TTL, Topic, AESNonce, Data, EnvNonce]

Expiry time: 4 bytes (UNIX time in seconds).

TTL: 4 bytes (time-to-live in seconds).

Topic: 4 bytes of arbitrary data.

AESNonce: 12 bytes of random data (only present in case of symmetric encryption).

Data: byte array of arbitrary size (contains encrypted message).

EnvNonce: 8 bytes of arbitrary data (used for PoW calculation).

Upon receipt of a message, if the node detects a known topic, it tries to decrypt the message with the

corresponding symmetric and asymmetric key. In case of failure, the node assumes that topic collision

occurs, e.g. the message was encrypted with another key. If decryption is successful, the message is

revealed with the following structure:

Flags: 1 byte

Padding: byte array of arbitrary size, optional

Message: byte array of arbitrary size (actual message content)

Signature: 65 bytes, optional, Ethereum ECDSA signature (Keccak-256 hash of unencrypted data)

Those unable to decrypt the message data are also unable to access the signature.

Page 9 of 36

4 Addressing

4.1 VASP identity & VASP code

The protocol uses the Ethereum blockchain as a decentralized public-key infrastructure (see next

chapter). Each participating VASP must deploy a standardized smart contract, which represents its

identity on the blockchain, similar to how a traditional public key certificate would function.

The Ethereum address of the standardized smart contract deployed by a VASP is defined to be the

VASP identity and the last 32 bits are called VASP code. Both values are numbers encoded as

hexadecimals, which are easy to process and human-readable. However, the “0x” radix, typically used

to indicate the hexadecimal format, is omitted for the VASP code.

4.2 Virtual Assets Account Number (VAAN)

At the outset, the beneficiary wants to receive virtual assets on a wallet hosted by a VASP and therefore

provides the originator with routing information on where to send them. The originator then instructs

his VASP to transfer the virtual assets based on the routing information.

In traditional payment systems, bank account numbers in combination with bank identifiers (e.g.

BIC/SWIFT, IBAN) are used as routing information.

We suggest a similar, but decentralized approach in form of the Virtual Assets Account Number

(VAAN), which is a 24-character hex code including a 2-character checksum. The leading eight

characters correspond to the VASP code, while the remaining characters are customer specific.

The VAAN should not contain spaces when transmitted electronically. When printed, it can be

expressed in groups of four characters separated by a single space for readability.

VASP code

bb428798

VASP identity

0x7e7aeffa3a54d41929577873c47cbda7bb428798

0x7e7aeffa3a54d41929577873c47cbda7

Last 32 bits

bb428798

VASP code

bb428798

Customer-specific number (56-bit)

524ee3fb082809

Concatenated string

bb428798524ee3fb082809

Concatenated string

bb428798524ee3fb082809

CheckSum8 Modulo 256

d3

VAAN

bb42 8798 524e e3fb 0828 09d3

Page 10 of 36

It is at the discretion of each VASP to define the details of how VAANs are assigned and used by their

customers. The proposed length of 14 hex characters (56 bits) for the client-specific number of the

VAAN gives each VASP a sufficiently large address space of 7.2 × 1016 identifiers, allowing plenty of

room including vanity numbers.

A VASP could assign a single, fixed VAAN to each customer by default, similar to how a traditional

bank account number is used. Another VASP might provide multiple VAANs on request or limit their

period of validity. Privacy-minded customers might even prefer to use a VAAN only once.

While VASPs are completely free in assigning VAANs to their customers within the boundaries of the

format, they must ensure that each VAAN is uniquely assigned to exactly one of their customers. By

doing so, the regulatory requirement for unique identification is ensured.

The proposed format allows the VAAN to be exchanged easily (e.g. via email) between beneficiary and

originator and facilitates VASP-to-VASP transfers of virtual assets beyond the purpose of FATF

compliance.

4.3 VAAN-based message routing

The VASP code, being the first 8 characters of the VAAN, is used as the header to send messages to

the respective VASP.

In case of Whisper, the header (VASP code) can directly be used as topic to route message envelopes to

the receiver (see previous chapter).

4.4 Transfer instructions to be given by a customer

From a customers’ perspective, only the name and the VAAN have to be provided to receive virtual

assets to his/her wallet hosted by a VASP.

Maria Muster

bb42 8798 524e e3fb 0828 09d3VAAN

Name

Beneficiary

Page 11 of 36

5. Authentication

A standardized Ethereum smart contract (called VASP contract) is used to represent the identity of a

VASP. Each VASP deploys its own contract and can also withdraw it at any time. As described in the

previous chapter (section 4.1), the Ethereum address of the contract is defined to be the VASP identity.

5.1 Direct and indirect authentication among VASPs

Direct mutual authentication between counterparty VASPs forms the basis of the protocol’s trust

model. Whenever two VASPs establish their business relationship, their respective identities can be

directly authenticated, meaning first-hand evidence is available that the other VASP’s identity is

genuine. For significant VASP-to-VASP relationships with virtual asset transfers occurring regularly

(e.g. broker/exchange, bank/custodian) authenticating each other’s identity will happen as part of the

usual onboarding process between financial intermediaries. While there is no requirement to make

this step public, most VASPs will find visible recognition from reputable counterparties to be a sign of

good standing.

Certified authentication by trusted third parties is the protocol’s second approach to ensure robust

authentication. Recognized self-regulatory organizations and trade associations are particularly

suitable to issue identity claims for their respective members. Claims by such issuers can directly

include an attestation about the VASP’s license or registration status obtained from competent

authorities.

Identity claims made by either peer VASPs or trusted issuers are signed and recorded in the VASP

contract for everyone’s reference. Claims can also be revoked by the issuing party at any time.

The ability to retrieve proven identity claims about a VASP on the blockchain at any time, enables the

wider community of VASPs to partially rely on indirect trust relationships. While risk-based decision

making is required, indirect authentication will be often feasible for one-time transfers of moderate

value.

5.2 VASP contract

A high-level specification of the VASP contract is outlined in this section, focusing on the most

important aspects required for the functioning of the protocol.

As mentioned earlier, each VASP deploys its own contract instance and takes the contracts’ deployment

address as identity identifier and the last 32 bits as the VASP code. The contract includes relevant

information about the VASP.

For better security and to facilitate separation of duties, different roles should be implemented (e.g.

owner, administrator). Addresses assigned to these roles can again point to multi-sig smart contracts

for better security. However, the VASP contract itself should be as simple as possible and delegate

access control and governance to calling contracts and systems.

VASP

Identity

Peer

VASPs

Wider VASP

community

Direct mutual
authentication

Certified
authentication

Indirect

Authentication

Issuers

Trust

Trust

Page 12 of 36

5.2.1 VASP contract attributes (selection)

name Legal name of the VASP

code Last 32 bit of VASP contract address, used as abbreviation for VASP identity

channels Communication channels the VASP is accepting for messages (e.g. Whisper,

Email, etc.)

handshakeKey Asymmetric public key used to securely establish sessions

signingKey Asymmetric public key used to verify message signatures

owner Address assigned as the owner for the VASP contract

administrator Address assigned to change smart contract attributes

postal address Attributes for the VASP’s postal address, in line with section 7.10

email, website Contact information

trustedPeers Trusted peer VASPs

identityClaims Identity claims made by trusted issuers

Page 13 of 36

5.2.2 VASP contract methods (selection)

addTrustedPeer(address) Adds peer VASP to the set of trusted peers. Must be called by the

administrator.

removeTrustedPeer(address) Removes peer VASP from the set of trusted peers. Must be called

by the administrator.

addClaim(address) Adds address of an identity claim contract, issued by a trusted

third party, to the set of accepted claims. Must be called by the

administrator.

removeClaim(address) Removes address of an identity claim contract from the set of

accepted claims. Must be called by the administrator.

5.3 Claim contract

While mutual trust between VASPs can easily be recorded by reciprocal entries in their VASP

contracts, identity claims made by third party issuers require a different setup. We propose the usage

of a simple claim contract as part of the OpenVASP protocol.

Deployed by the issuer, the claim contract allows to specify the content and potential qualifications of

the claim made about the VASP. Since the contract remains under control of the issuer, it can be

revoked (terminated) at any time.

VASPs accept a claim made about them by adding the respective claim contract address. If for whatever

reason necessary, claims can be repudiated by again removing the reference.

5.4 Registering the VASP code in the Ethereum Name Service (ENS)

The Ethereum Name Service (ENS) allows to use short, human-readable names as pointers to

otherwise long Ethereum addresses. Its logic and governance are completely decentralized, operating

solely as a set of smart contracts. The reader can find more information under https://ens.domains/.

As described in chapter 4, the VASP code is an abbreviation of the VASP contract address (VASP

identity) and serves as prefix in the proposed VAAN format. Alternatively, the full contract address

could have been used to uniquely bind a VAAN to the VASP identity on the blockchain. Using the

shorter VASP code is obviously more convenient for everyday handling. However, it introduces the risk

that an imposter could try to set up a smart contract with the same abbreviation as an existing VASP.

Other VASPs may then be deceived into interacting with the wrong counterparty.

In order to mitigate this risk, VASPs must register their VASP code as an ENS domain and point it to

their VASP contract. Taking the example from section 4.1, the VASP would register bb428798.eth and

point it to the address 0x7e7aeffa3a54d41929577873c47cbda7bb428798.

The probability for a new VASP contract address to be the same as an existing one, is relatively low

with one in 4.29 × 109. Nevertheless, if a collision was to happen, it would immediately be detected as

the corresponding ENS domain would no longer be available for registration. In such as case, a simple

redeployment of the contract generates a new contract address.

Besides providing security against imposters and accidental collisions, using the VASP code as ENS

domain brings convenience as any VASP’s identity can be quickly retrieved by the 8-character code.

https://ens.domains/

Page 14 of 36

5.5 Communication channels offered

As described in chapter 3, different communication channels might be used to exchange protocol

messages, and each VASP could decide which cannels to offer. Available options can be retrieved from

the channels attribute of the VASP contract.

5.6 Summary: Steps to authenticate a VASP

Whenever a counterparty VASP must be authenticated for the first time, the following steps are

required to verify that a valid VASP identity is available.

1) Check if the 8-character VASP code, followed by the .eth domain suffix, resolves to the VASP

contract address.

2) Check if the standardized VASP contract was deployed and used as VASP identity.

3) Check whether key attributes are properly filled out in the VASP contract.

4) Check which of the VASPs listed as trusted peers in the VASP contract have reciprocally listed

the counterparty VASP as a trusted peer.

5) Review available identity claims issued by trusted third parties and verify their authenticity

(e.g. by checking whether the known third party public address was used to set up the identity

claim contract).

Steps 1) to 3) are formal requirements and must be concluded with a positive result.

Information obtained in steps 4) and 5) require an assessment whether claims made by trusted peers

and third parties is deemed to be sufficient for indirect authentication. If this is not the case, the VASP

must be directly authenticated by obtaining first-hand evidence that the identity is genuine, e.g. by

confirming the VASP identity via personal contact.

The above mentioned steps can largely be automated with exception of the final decision whether

indirect authentication is enough to proceed.

Page 15 of 36

6 Protocol Flow

The protocol provides a set of requests and responses to facilitate a structured communication between

the originator VASP and the beneficiary VASP transferring virtual assets on behalf of their respective

customers.

At the outset, the beneficiary wants to receive virtual assets on a wallet hosted by the beneficiary VASP

and therefore provides the originator with routing information on where to send them. The originator

then instructs the originator VASP to transfer the virtual assets.

In the initiation phase, the involved VASPs establish communication and mutually authenticate and

authorize each other. In transfer phase, originator/beneficiary information is exchanged, the transfer

gets mutually approved and execution on the blockchain is notified and confirmed.

Page 16 of 36

For the transfer phase, the protocol supports two different policies how a beneficiary VASP accepts

virtual assets on behalf of their customers:

A) Approval required before blockchain transaction

Given the compliance obligations, the beneficiary VASP will generally want to approve a

virtual asset transfer based on originator and beneficiary information before the actual

blockchain transaction is executed. In addition, the beneficiary VASP can specify the

destination address on the blockchain to be used for this transfer.

B) Approval NOT required before blockchain transaction

For efficiency reasons the VASPS may have agreed that an approval before the actual

blockchain transaction is not required for certain transfers (e.g. transfers between two

specific customers). As no message is exchanged before the blockchain transaction, either

always the same destination address is used, or the originator VASP knows the destination

address from a different source (e.g. using deterministic addresses based on a shared master

public key). Such a practice can make sense when the VASPs regularly process numerous

transactions for the same originator and beneficiary, e.g. as part of an automated setup.

The following sections provide more details about each of the protocol steps.

6.1 VAAN Provision

6.1.1 Processing steps by the beneficiary VASP

a) Generate a customer specific VAAN based on the steps described in section 4.2.

b) Ensure that incoming messages containing the VASP code as header can be received and

processed (e.g. that the Whisper node is set up) and prepare internal systems and procedures

to receive and process protocol messages related to the VAAN generated in the previous step.

c) Provide the VAAN to the customer who can use it as routing information to receive virtual

assets to the hosted wallet.

VAAN Provision (Beneficiary VASP)

(a)Generate VAAN

Prepare for VAAN

related requests

Provide VAAN

to customer

(b)

(c)

Page 17 of 36

6.2 Session Request

6.2.1 Processing steps by the originator VASP

a) Receive instruction from customer to transfer virtual asset to a wallet hosted with another

VASP, specified by name and VAAN (see section 4.2) of the beneficiary.

b) Identify and authenticate beneficiary VASP specified in the VAAN. See section 6.9 for

authentication steps.

c) Once successfully authenticated, authorize the beneficiary VASP (see section 6.10).

d) Perform a risk-based decision whether a virtual asset transfer can be executed, based on all

relevant information including information about the originator, the beneficiary, the

beneficiary VASP, the virtual asset type and the amount of the requested transfer.

e) Generate a random header (topic A) to be used in this session. Generate private and public

keys based on the elliptic curve Diffie–Hellman (ECDH) key-exchange protocol to use for

ephemeral encryption in transfer phase. Derive shared key based on the ECDH public key from

the beneficiary VASP (handshakeKey in VASP contract) and own ECDH public key generated

in the previous step.

f) Prepare systems to receive the VARC Reply message from the beneficiary VASP (e.g. in the

Whisper node, subscribe to messages with topic A and being encrypted with the shared key).

g) Send Session Request message (type 110, see section 7.3) to the beneficiary VASP.

Page 18 of 36

6.3 Session Reply

6.3.1 Processing steps by the beneficiary VASP

a) Receive Session Request message (type 110), e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Authenticate the originator VASP. See section 6.9 for authentication steps.

d) Once successfully authenticated, authorize the beneficiary VASP (see section 6.10).

e) Generate a random header (topic B) to be used in this session. Derive shared key based on the

ECDH public key from the originator VASP (received in message) and own ECDH public key.

f) Prepare systems to receive subsequent messages from the originator VASP (e.g. in the Whisper

node, subscribe to messages with topic B and being encrypted with the shared key).

g) Send Session Reply message (type 150, see section 7.4) to the originator VASP. In case of failed

authentication (step c) or failed authorization (step d), a negative message is sent by providing

the response code specifying the reason for failure.

Page 19 of 36

6.4 Transfer Request

6.4.1 Processing steps by the originator VASP

a) Receive Session Reply message (type 150), e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Check whether received message has a positive response code.

d) Prepare originator and beneficiary data (see sections 7.11 and 7.12 for details).

e) Prepare transfer session details (virtual asset type, transfer type and amount).

f) Send Transfer Request message (type 210, see section 7.5) to the beneficiary VASP.

g) In case of an invalid or negative incoming message (steps b or c), the session is terminated

following the steps in section 6.6.

Page 20 of 36

6.5 Transfer Reply

6.5.1 Processing steps by the beneficiary VASP

a) Receive Transfer Request message (type 210), e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Perform a risk-based decision whether the requested virtual asset transfer can be executed,

based on all relevant information including information about the originator, the beneficiary,

the beneficiary VASP, the virtual asset type and the amount of the requested transfer.

d) Define destination address to be used for the virtual asset transfer.

e) Send Transfer Replay message (type 250, see section 7.6) to the originator VASP. In case of an

invalid incoming message (step b) or if the transfer is deemed to be non-compliant, a negative

message is sent by providing the response code specifying the reason for failure.

Page 21 of 36

6.6 Transfer Dispatch

6.6.1 Processing steps by the originator VASP (situation 1)

a) Receive Transfer Reply message (type 250), e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Check whether received message has a positive response code.

d) Execute the virtual asset transfer by posting the transaction to the blockchain or distributed

ledger technology (DLT) system. Check whether the transaction has been successfully

executed, considering the specifics of the technology used for the transfer (e.g. awaiting a

number of confirmations). Repeat if necessary.

e) Determine transaction information (identifier, date and time of execution and sending address,

if applicable).

f) Send Transfer Dispatch message (type 310, see section 7.7) to the beneficiary VASP.

g) In case of an invalid or negative incoming message (steps b or c) or if the transfer could not be

executed (e.g. for technical reasons), a negative message is sent by providing the response code

specifying the reason for failure.

Page 22 of 36

6.6.2 Processing steps by the originator VASP (situation 2)

h) Receive negative Transfer Confirmation message (type 350), e.g. from the Whisper node.

i) Verify whether transaction has been correctly executed and analyze the reason for negative

confirmation from the beneficiary VASP. Repeat execution of transaction if necessary.

j) Determine transaction information (identifier, date and time of execution and sending address,

if applicable).

k) Send new Transfer Dispatch message (type 310, see section 7.7) to the beneficiary VASP,

specifying the result of the verification.

l) If the transfer could (still) not be executed (e.g. for technical reasons), a negative message is

sent with a response code specifying the reason for failure.

6.7 Transfer Confirmation

6.7.1 Processing steps by the beneficiary VASP

a) Receive Transfer Dispatch message (type 310), e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Check whether the transaction has been successfully executed on the blockchain or distributed

ledger technology (DLT) system, considering the specifics of the technology used for the

transfer (e.g. awaiting a number of confirmations). Verify whether received transaction

information is accurate.

d) Send Transfer Confirmation message (type 350, see section 7.8) to the originator VASP. In case

of an invalid incoming message (step b) or if the transaction has not been successfully executed

or is not matching the transaction information received in message 310 (step c), a negative

message is sent by providing the response code specifying the reason for failure.

Page 23 of 36

6.8 Termination

6.8.1 Processing steps by the originator VASP

a) Receive Session Reply (type 150), Transfer Reply (type 250) or Transfer Confirmation (type

350) message, e.g. from the Whisper node.

b) Verify if incoming message contains mandatory data in valid format and is correctly signed.

c) Send Termination message (type 910, see section 7.8) to the originator VASP. In case of an

invalid incoming message (step b) or if the transaction has not been successfully executed or is

not matching the transaction information received in message 310 (step c), a negative message

is sent by providing the response code specifying the reason for failure.

6.9 Authentication

Termination (Originator VASP)

(a)
Process message

types 150, 250, 350

Message is valid? (b)

Send positive

message type 910
(c)

No

Send negative

message type 910
(c)

Page 24 of 36

6.2.1 Processing steps

a) Ideally, the receiving VASP can be directly authenticated, which means first-hand evidence

that the identity is genuine (e.g. obtaining the VASP identity via personal contact).

b) Indirect authentication can be achieved if both sending and receiving VASP share a web of

trust involving other VASPs or by checking the counterparty’s identity claims issued by

thrusted third parties.

c) If indirect authentication is deemed not to be enough, establishing direct authentication should

be considered.

See chapter 5 for more details about authentication.

6.10 Authorization

6.3.1 Processing steps

a) The VASP must evaluate whether the counterparty VASP is acceptable or not in order to

comply with applicable laws and regulations. Particularly the rules regarding anti-money

laundering, sanctions and the combating the financing of terrorism must be applied when

evaluating the counterparty VASP. Decision is taken following a risk-based approach and

differs from VASP to VASP.

Important: the decision whether a virtual asset transfer can be executed is not only based on

the counterparty VASP, but primarily by analyzing originator and beneficiary information.

This step is solely about the assessment on the counterparty VASP involved in the transfer

once identified and authenticated.

Page 25 of 36

7. Protocol Messages

7.1 Message Types

The protocol includes seven structured message types as summarized in the table below. Protocol

messages are specified to use the JSON format, which is human-readable as well as common for data

processing.

Each message contains relevant header information and is signed with the sender’s private key.

Certain content is deliberately repeated in the different messages to provide complete information

about the virtual asset transfer in its respective state when looking at a specific message. In this way,

messages can be directly filed and maintained in compliance with applicable regulations.

This set of message types is meant to form the basis for a more extended VASP-to-VASP protocol with

additional message types to be included based on community requirements. Therefore, session

initiation using message types 110 and 150 is designed to be a generic handshake for any message

types to follow. Similarly, message type 910 is solely closing the session in the end.

One of the most obvious additions would be message types for bulk transfers of virtual assets, which

might be particularly relevant for larger VASPs. However, it seems reasonable to first gain experience

on single transfers first and expand the protocol based on the learnings of the user base.

Details for the seven message types can be found in sections 7.3 to 7.9 of this chapter.

110 150 210 250 310 350 910

Message Type
Session

Request

Session

Reply

Transfer

Request

Transfer

Reply

Transfer

Dispatch

Transfer

Confirmation
Termination

Actor
Originator

VASP

Beneficiary

VASP

Originator

VASP

Beneficiary

VASP

Originator

VASP

Beneficiary

VASP

Originator

VASP

Message Envelope

Topic Ben. VASP code Topic A Topic B Topic A Topic B Topic A Topic B

Encryption Key
Ben. VASP

handshake key

ECDH

shared key

ECDH

shared key

ECDH

shared key

ECDH

shared key

ECDH

shared key

ECDH

shared key

Encryption Type Asymmetric Symmetric Symmetric Symmetric Symmetric Symmetric Symmetric

Message Content

Message Message id Message id Message id Message id Message id Message id Message id

Session id Session id Session id Session id Session id Session id Session id

Message code Message code Message code Message code Message code Message code Message code

Handshake Topic A

ECDH

public key

Topic B

Originator Originator

information

Originator

information

Originator

information

Originator

information

Beneficiary Beneficiary

information

Beneficiary

information

Beneficiary

information

Beneficiary

information

Transfer Virtual asset

type

Virtual asset

type

Virtual asset

type

Virtual asset

type

Transfer type Transfer type Transfer type Transfer type

Amount Amount Amount Amount

Destination

address

Destination

address

Destination

address

Transaction Transaction id Transaction id

DateTime DateTime

Sending

address

Sending

address

Comment Comment Comment Comment Comment Comment Comment Comment

VASP VASP

Information

VASP

Information

VASP

Information

VASP

Information

VASP

Information

VASP

Information

VASP

Information

Signature Signature Signature Signature Signature Signature Signature Signature

Message Flow

Preceding Messages - 110 150 210 150, 250 310 150, 250, 350

See section: 7.3 7.4 7.5 7.6 7.7 7.8 7.9

Page 26 of 36

7.2 Session Model

All messages exchanged for a virtual asset transfer form a session. Sessions are initiated by message

type 110 and acknowledged by message type 150.

The initiation phase includes the exchange of public keys to generate a shared symmetric key following

the elliptic curve Diffie–Hellman (ECDH) protocol. In addition, both VASPs exchange random headers

to be used for message routing in transfer phase (topic A and topic B).

Following initiation phase, originator and beneficiary information can be exchanged ensuring forward

secrecy, as the long-term keys are used for authentication purposes only.

7.2.1 Encryption system and parameter selection

Cryptographic algorithms used and all its parameter (e.g. key lengths) must be thoroughly challenged

and carefully selected as part of the final protocol specification. The following suggestions are meant

as a starting point for discussion:

▪ Session request message:

Asymmetric encryption SECP-256k1 as per Whisper standard, using the handshakeKey

published in the VASP contract (see section 5.2).

▪ All other messages:

Symmetric encryption with the AES GCM algorithm as per Whisper standard, 256-bit key with

random 96-bit nonce.

Shared key generated via the X25519 key exchange protocol with a fixed key length of 256 bit.

Salting as well as an appropriate key derivation function must be defined, considering that one

of the two public ECDH keys is published in the VASP contract and therefore reused.

Page 27 of 36

7.3 Session Request

7.3.1 Message purpose

Initiates a session between two VASPs. First part of a two-way handshake between VASPs to finally

generate a shared symmetric session key based on the Diffie–Hellman key-exchange protocol

7.3.2 Message structure

Name Session Request

Number 110

Actor Originator VASP

Envelope Parameter Value Type

Topic Beneficiary VASP code Hex(32-bit)

Encryption Key Beneficiary VASP handshake key Hex(256-bit)

Encryption Type Asymmetric SECP-256k1

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘110’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 Randomly set and used for entire session

 Message code code String 1..1 Currently not used, fixed value ‘1’

Handshake handshake 1..1

 Topic A topica Hex(32-bit) 1..1 Randomly set

 ECDH public key ecdhpk Hex(256-bit) 1..1 According to specified domain parameters

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1 Message signed with actor’s private signing key

Page 28 of 36

7.4 Session Reply

7.4.1 Message purpose

Response (positive or negative) to a previous request for initiating a session between two VASPs.

Second part of a two-way handshake.

7.4.2 Message structure

Name Session Reply

Number 150

Actor Beneficiary VASP

Envelope Parameter Value Type

Topic Topic A Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘150’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 See 7.4.3

Handshake handshake 1..1

 Topic B topicb Hex(32-bit) 1..1 Randomly set

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1
Message signed with actor’s private signing

key

7.4.3 Possible message codes

1 = Session accepted

2 = Session declined; request not valid

3 = Session declined; originator VASP could not be authenticated

4 = Session declined; originator VASP declined

5 = Session declined; temporary disruption of service

Page 29 of 36

7.5 Transfer Request

7.5.1 Message purpose

Seeking approval from the beneficiary VASP for a virtual asset transfer by specifying transfer details

including originator and beneficiary information.

7.5.2 Message structure

Name Transfer Request

Number 210

Actor Originator VASP

Envelope Parameter Value Type

Topic Topic B Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘210’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 Currently not used, fixed value ‘1’

Originator see 7.11 for elements originator 1..1 Originator information

Beneficiary see 7.12 for elements beneficiary 1..1 Beneficiary information

Transfer transfer 1..1

 Virtual asset type va String 1..1 See 7.5.3

 Transfer type ttype Number 1..1 See 7.5.4

 Amount amount Decimal 1..1 18 digits

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1 Message signed with actor’s private signing key

7.5.3 Possible transfer types

Examples: BTC = Bitcoin, ETH = Ethereum.

To be defined as part of community governance.

7.5.4 Possible transfer types

1 = Blockchain transaction

(no further codes defined at the moment, but used to specify alternative transfer types, e.g. Layer 2 mechanisms)

Page 30 of 36

7.6 Transfer Reply

7.6.1 Message purpose

Response (positive or negative) to an originator VASP having sought approval for a virtual asset

transfer by specifying transfer details including originator and beneficiary information.

7.6.2 Message structure

Name Transfer Reply

Number 250

Actor Beneficiary VASP

Envelope Parameter Value Type

Topic Topic A Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘250’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 See 7.6.3

Originator see 7.11 for elements originator 1..1 Originator information

Beneficiary see 7.12 for elements beneficiary 1..1 Beneficiary information

Transfer transfer 1..1

 Virtual asset type va String 1..1 See 7.5.3

 Transfer type ttype Number 1..1 See 7.5.4

 Amount amount Decimal 1..1 18 digits

 Destination address destination String 0..1

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1 Message signed with actor’s private signing key

7.6.3 Possible message codes

1 = Transfer accepted

2 = Transfer declined; request not valid

3 = Transfer declined; no such beneficiary

4 = Transfer declined; virtual asset not supported

5 = Transfer declined; transfer not authorized

6 = Transfer declined; temporary disruption of service

Page 31 of 36

7.7 Transfer Dispatch

7.7.1 Message purpose

Notifies the beneficiary VASP that a virtual asset transaction has been committed to the blockchain.

7.7.2 Message structure

Name Transfer Dispatch

Number 310

Actor Originator VASP

Envelope Parameter Value Type

Topic Topic B Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘310’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 Currently not used, fixed value ‘1’

Originator see 7.11 for elements originator 1..1 Originator information

Beneficiary see 7.12 for elements beneficiary 1..1 Beneficiary information

Transfer transfer 1..1

 Virtual asset type va String 1..1 See 7.5.3

 Transfer type ttype Number 1..1 See 7.5.4

 Amount amount Decimal 1..1 18 digits

 Destination address destination String 0..1

Transaction tx 1..1

 Transaction identifier txid String 0..1 Format specific to virtual asset / transfer type

 Transaction datetime datetime String 1..1 ISO 8601 (YYYY-MM-DDThh:mm:ssZ)

 Sending address sendingadr String 0..1
Blockchain-specific format, sending address

used for transaction (non-UTXO systems)

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1
Message signed with actor’s private signing

key

Page 32 of 36

7.8 Transfer Confirmation

7.8.1 Message purpose

Positive or negative acknowledgement to the originator VASP about the receipt of virtual assets

transferred via a blockchain transaction.

7.8.2 Message structure

Name Transfer Confirmation

Number 350

Actor Beneficiary VASP

Envelope Parameter Value Type

Topic Topic A Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘350’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 See 7.8.3

Originator see 7.11 for elements originator 1..1 Originator information

Beneficiary see 7.12 for elements beneficiary 1..1 Beneficiary information

Transfer transfer 1..1

 Virtual asset type va String 1..1 See 7.5.3

 Transfer type ttype Number 1..1 See 7.5.4

 Amount amount Decimal 1..1 18 digits

 Destination address destination String 0..1

Transaction tx 1..1

 Transaction identifier txid String 0..1 Format specific to virtual asset / transfer type

 Transaction datetime datetime String 1..1 ISO 8601 (YYYY-MM-DDThh:mm:ssZ)

 Sending address sendingadr String 0..1
Blockchain-specific format, sending address

used for transaction (non-UTXO systems)

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1
Message signed with actor’s private signing

key

7.8.3 Possible message codes

1 = Transfer confirmed

2 = Transfer not confirmed; dispatch not valid

3 = Transfer not confirmed; assets not received

4 = Transfer not confirmed; wrong amount

5 = Transfer not confirmed; wrong asset

6 = Transfer not confirmed; transaction data mismatch

Page 33 of 36

7.9 Termination

7.9.1 Message purpose

Terminates a session between two VASPs.

7.9.2 Message structure

Name Termination

Number 910

Actor Originator VASP

Envelope Parameter Value Type

Topic Topic B Hex(32-bit)

Encryption Key ECDH shared key Hex(256-bit)

Encryption Type Symmetric AES GCM

Level 1 Level 2 Name Type Mult. Comment

Message msg 1..1

 Message type type String 1..1 Fixed value: ‘910’

 Message identifier msgid Hex(128-bit) 1..1 Randomly set

 Session identifier session Hex(128-bit) 1..1 As set in message 110

 Message code code String 1..1 See 7.9.3

Comment comment String 0..1

VASP see 7.10 for elements vasp 1..1 VASP information incl. public signing key

Signature sig String 1..1 Message signed with actor’s private signing key

7.9.3 Possible message codes

1 = Session closed; transfer occurred

2 = Session closed; transfer declined by beneficiary VASP

3 = Session closed; transfer canceled by originator VASP

Page 34 of 36

7.10 VASP Information

Mandatory and optional elements for transmitting information about the VASPs involved in the virtual

asset transfer.

Level 2 Level 3 Name Type Mult. Rules Comment

Name name String 1..1 Legal name

VASP identity id String 1..1 Ethereum address of VASP contract

VASP public key pk String 1..1 Ethereum public key, see sec. 5.2

Postal address address 1..1

 Street name street String 0..1 1

 Building number number String 0..1 1

 Address line adrline String 0..1 1 Alternative to street/number

 Post code postcode String 1..1

 Town name town String 1..1

 Country country String 1..1 ISO 3166-1 alpha-2 code

Date / place of birth birth 0..1 2

 Birth date birthdate Date 1..1 ISO 8601 (yyyymmdd)

 City of birth birthcity String 1..1

 Country of birth birthcountry String 1..1 ISO 3166-1 alpha-2 code

Natural person ID nat 0..* 2

 Identification type natid_type Integer 1..1

1 = Passport number

2 = National identity number

3 = Social security number

4 = Tax identification number

5 = Alien registration number

6 = Driver’s license number

7 = Other

 Identifier natid String 1..1

 Issuing country natid_country String 0..1 5 ISO 3166-1 alpha-2 code

 Non-state issuer natid_issuer String 0..1 5

Juridical person ID jur 0..* 3

 Identification type jurid_type Integer 1..1

1 = Country identification number

2 = Tax identification number

3 = Certificate of incorporation no.

4 = Legal Entity Identifier (LEI)

5 = Bank party identification

6 = Other

 Identifier jurid String 1..1

 Issuing country jurid_country String 0..1 6 ISO 3166-1 alpha-2 code

 Non-state issuer jurid_issuer String 0..1 6

BIC bic String 0..1 4 ISO 9362 Bank Identifier Code

7.10.1 Rules

6) Either [street] and [number] must both be present or [adrline]. All three positions can be present at the

same time.

7) [birth] or [nat] is allowed, if neither [jur] nor [bic] is present.

8) [jur] is allowed, if neither [birth] nor [nat] nor [bic] is present.

9) [bic] is allowed, if neither [birth] nor [nat] nor [jur] is present.

10) If [nat] is present, either [natid_country] or [natid_issuer] or both must be present.

11) If [jur] is present, either [jurid_country] or [jurid_issuer] or both must be present.

Page 35 of 36

7.11 Originator Information

Mandatory and optional elements for transmitting originator information to be included in message

types 210, 250, 310 and 350.

Level 2 Level 3 Name Type Mult. Rules Comment

Name name String 1..1

VAAN vaan Hex(96-bit) 1..1 Assigned by VASP, see section 4.2

Postal address address 0..1

 Street name street String 0..1 1

 Building number number String 0..1 1

 Address line adrline String 0..1 1 Alternative to street/number

 Post code postcode String 1..1

 Town name town String 1..1

 Country country String 1..1 ISO 3166-1 alpha-2 code

Date / place of birth birth 0..1 2

 Birth date birthdate Date 1..1 ISO 8601 (yyyymmdd)

 City of birth birthcity String 1..1

 Country of birth birthcountry String 1..1 ISO 3166-1 alpha-2 code

Natural person ID nat 0..* 2

 Identification type natid_type Integer 1..1

1 = Passport number

2 = National identity number

3 = Social security number

4 = Tax identification number

5 = Alien registration number

6 = Driver’s license number

7 = Other

 Identifier natid String 1..1

 Issuing country natid_country String 0..1 5 ISO 3166-1 alpha-2 code

 Non-state issuer natid_issuer String 0..1 5

Juridical person ID jur 0..* 3

 Identification type jurid_type Integer 1..1

1 = Country identification number

2 = Tax identification number

3 = Certificate of incorporation no.

4 = Legal Entity Identifier (LEI)

5 = Bank party identification

6 = Other

 Identifier jurid String 1..1

 Issuing country jurid_country String 0..1 6 ISO 3166-1 alpha-2 code

 Non-state issuer jurid_issuer String 0..1 6

BIC bic String 0..1 4 ISO 9362 Bank Identifier Code

7.11.1 Rules

1) Either [street] and [number] must both be present or [adrline]. All three positions can be present at the

same time.

2) [birth] or [nat] is allowed, if neither [jur] nor [bic] is present.

3) [jur] is allowed, if neither [birth] nor [nat] nor [bic] is present.

4) [bic] is allowed, if neither [birth] nor [nat] nor [jur] is present.

5) If [nat] is present, either [natid_country] or [natid_issuer] or both must be present.

6) If [jur] is present, either [jurid_country] or [jurid_issuer] or both must be present.

Page 36 of 36

7.12 Beneficiary Information

Mandatory and optional elements for transmitting originator data to be included in message types 210,

250, 310 and 350.

Level 2 Level 3 Name Type Mult. Rules Comment

Name name String 1..1

VAAN vaan Hex(96-bit) 1..1 Assigned by VASP, see section 4.2

